A Hyperbolic Geometric Flow for Evolving Films and Foams

^{1,2}Sadashige Ishida, ²Masafumi Yamamoto, ³Ryoichi Ando, and ²Toshiya Hachisuka 1:Nikon Corporation, 2:The University of Tokyo, 3:National Institute of Informatics

Overview

Reformulation of soap film dynamics as geometric flow Surface-driven simulation of soap film dynamics

Related Work

Grid-based

Zheng et al. [2006]

Kim et al. [2007]

Bubble Animation

Particle-based

Hong et al. [2008]

Busaryev et al. [2012]

Surface-Driven Soap Films

Durikovic [2001]

Zhu et al. [2014]

Da et al. [2015]

Soap Films in Physics

Dynamic Fluids with Three Layers

external air

liquid film

internal air

Ideally, computable via the Navier-Stokes equations

Simulation

$\frac{D\boldsymbol{u}}{Dt} = \frac{1}{\rho}\nabla p + \frac{\mu}{\rho}\Delta \boldsymbol{u} + \frac{\lambda + \mu}{\rho}\nabla\Theta + \boldsymbol{g}$

Challenges

Thickness of films is extremely thin Super-high resolution grid is necessary Volumetric computation is too expensive

Soap Films in Mathematics

Geometric Property

Soap films evolve to reduce their surface area, while preserving inner volumes.

Steady States and Plateau's Laws

Area-minimized shapes with volume constraints

Steady States and Plateau's Laws

Area-minimized shapes with volume constraints

$\operatorname{arccos}(-1/3) \approx 109^{\circ}$

Plateau's Problem

Mathematical formulation of the steady states

$\frac{d}{d\epsilon}\Big|_{\epsilon=0} \int_{U} |S_{u}^{\epsilon} \times S_{v}^{\epsilon}| du dv = 0$

General solutions are not found yet.

Solving Plateau's Problem

Solving Plateau's Problem A common approach: Evolve surface under Mean Curvature Flow.

Mean Curvature Flow (MCF)

$\frac{d\boldsymbol{x}}{dt} = -H(\boldsymbol{x},t)\boldsymbol{n}(\boldsymbol{x},t)$

mean curvature

surface normal

Property of MCF

Single open surface

Local minimum of the area functional

Property of MCF

leads films to the steady states no oscillation

Hyperbolic Mean Curvature Flow (HMCF)

$\frac{d^2 \boldsymbol{x}}{dt^2} = -\beta H(\boldsymbol{x}, t) \boldsymbol{n}(\boldsymbol{x}, t)$ constant

mean curvature

surface normal

Property of HMCF

Single open surface

Local minimum of the area functional

We integrate this geometric view into the film dynamics.

HMCF seems very good for soap film dynamics. leads films to the steady states with oscillation

HMCF seems very good for soap film dynamics, but ...

Mean curvature is undefined on non-manifold junctions. HMCF does not preserve inner volume.

Non-manifold junctions

Issues

Evolution under HMCF

Our Solution

• Use variational derivative of the area functional, instead of mean curvature normal

$$Hm{n} \longrightarrow rac{\partial \mathcal{A}}{\partial m{x}}$$

Volume preservation for multiple regions

Initial state Intermediate state Evolution by $\frac{\partial A}{\partial x}$ Volume preservation

Model Overview

Next state

Hyperbolic Mean Curvature Flow

 $\frac{d^2 \boldsymbol{x}}{dt^2} = -\beta H(\boldsymbol{x},t) n(\boldsymbol{x},t)$

Volume Preserving Hyperbolic Geometric Flow for Multiple Surfaces

 $\frac{d^2 \boldsymbol{x}}{dt^2} = -$

pressure difference across films

Volume Preserving Hyperbolic Geometric Flow for Multiple Surfaces $\frac{d^2 x}{dt^2}$ oa oa Δpn surface tension force air pressure from both sides

The Algorithm

Algorithm Overview

Algorithm Overview

Next state

Volume preservation

pn

Evolution by $\frac{\partial \mathcal{A}}{\partial x}$

Variational Derivative of Area

Moving \boldsymbol{x} toward $-\frac{\partial \mathcal{A}}{\partial x}$ minimizes the area.

 $\partial \mathcal{A}$ $\partial \boldsymbol{x}$

Gradient of the surface area on each point

Defined Everywhere on Films

non-manifold junction

manifold point

Natural Extension of Hn

Common properties of $\overline{\partial x}$ and Hn

- Negative direction: minimizes the local area

$\frac{\partial \mathcal{A}}{\partial u} = Hn \quad \text{on manifold points}$ Indeed, $\partial \boldsymbol{x}$

$\partial \mathcal{A}$

Magnitude: difference from the area-minimized configuration

After the First Step

After the First Step

Enclosed volumes may decrease at this point.

Volume preservation

After the First Step

Need to resolve the volume change for all the regions.

Volume Preservation

Next state

Volume preservation

Move each point toward the normal direction. The correction amount $\Delta d(t)$ is spatially constant.

Müller's Volume Preservation [2006]

Extension to Multiple Regions

is related to the pressure difference.

The correction amount $\Delta d(t, \boldsymbol{x})$ for each point

Pressure and Volume Preservation

Performing volume preservation

Computing the pressure difference term $\Delta p n$

Assumptions

- incompressibility

constant pressure per region

After the Second Step

Initial stateIntermedEvolution by $\frac{\partial A}{\partial x}$

Volume preservation

Connection to Physics

The Navier-Stokes equations $\frac{D\boldsymbol{u}}{Dt} = -\frac{\sigma H \delta(\boldsymbol{x})}{\rho} \boldsymbol{n} + \frac{1}{\rho} \nabla p$

Assumptions

 infinitesimal thickness constant pressure per region

Results

Computational Timings

Plateau's Laws

F

Convergence of Surface Area

Volume Control

Achieved simply by changing the initial inner volumes.

External Force

Not well handled in previous work

Ours: Velocity is determined by acceleration Straightforward to add external force

- Da et al. 2015 : Velocity is determined by circulation Cannot directly add external force as acceleration

External Force

A bubble blown by the wind

Comparison to Real Footage

experiment [Pucci et al. 2015]

our simulation

Efficient simulation method for soap film dynamics

Mathematical contributions:

- force

Conclusion

Volume preserving hyperbolic geometric flow for multiple surfaces Numerical solver for Plateau's problem, even with presence of external

Conclusion

Efficient simulation method for soap film dynamics

Mathematical contributions:

- force

Volume preserving hyperbolic geometric flow for multiple surfaces Numerical solver for Plateau's problem, even with presence of external

Conclusion

Efficient simulation method for soap film dynamics

Mathematical contributions:

- force

Volume preserving hyperbolic geometric flow for multiple surfaces Numerical solver for Plateau's problem, even with presence of external

Acknowledgements

- Sigurd Ofstad, for discussion and experiments
- Hisanari Otsu, for customization of Mitsuba renderer
- Christopher Batty, Fang Da, and Raymond Yun Fei, on insightful discussions on the previous work
- Jamorn Sriwasansak, for the advice on the Thai language
- Nikon Corporation, for the support by grants

n and experiments tion of Mitsuba renderer and Raymond Yun Fei, the previous work advice on the Thai language upport by grants

Source Code is Available

https://github.com/sdsgisd/HGF