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Fig. 1. Various configurations of soap films produced by our method; falling bubbles on a film (le�), films spanning a twisted wire (center), and a foam (right).
Our geometric formulation robustly handles complex structures of films and foams such as non-manifold surfaces with topology changes.

Simulating the behavior of soap �lms and foams is a challenging task. A di-
rect numerical simulation of �lms and foams via the Navier-Stokes equations
is still computationally too expensive. We propose an alternative formula-
tion inspired by geometric �ow. Our model exploits the fact, according to
Plateau’s laws, that the steady state of a �lm is a union of constant mean
curvature surfaces and minimal surfaces. Such surfaces are also well known
as the steady state solutions of certain curvature �ows. We show a link
between the Navier-Stokes equations and a recent variant of mean curva-
ture �ow, called hyperbolic mean curvature �ow, under the assumption of
constant air pressure per enclosed region. Instead of using hyperbolic mean
curvature �ow as is, we propose to replace curvature by the gradient of
the surface area functional. This formulation enables us to robustly handle
non-manifold con�gurations; such junctions connecting multiple �lms are
intractable with the traditional formulation using curvature. We also add
explicit volume preservation to hyperbolic mean curvature �ow, which in
fact corresponds to the pressure term of the Navier-Stokes equations. Our
method is simple, fast, robust, and consistent with Plateau’s laws, which are
all due to our reformulation of �lm dynamics as a geometric �ow.
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1 INTRODUCTION
Ephemeral yet complex shapes of �lms and foams have fascinated
many people over the years. The steady-state shape of soap �lms has
long been a subject of study in di�erential geometry [Powers et al.
2002; Sullivan and Morgan 1996; Taylor 1976]. The pioneering study
by Plateau resulted in a set of laws that describe the steady-state
shape called Plateau’s laws. Named after him, Plateau’s problem
[Rado 1930] relates the steady-state shape with area-minimizing
surfaces given �xed boundaries. One of the �rst Fields Medals was
awarded to the study [Douglas 1931] of Plateau’s problem, and it re-
mains an active topic of study in mathematics even today [Ambrosio
2015; Harrison 2014; Harrison and Pugh 2015].

In addition to mathematical studies, computer simulation of �lms
and foams has also been a challenging problem. A commonly used
numerical solver for the Navier-Stokes equations can be compu-
tationally very expensive since it involves a simulation of multi-
�uid phenomena with extremely thin geometry deforming with
surface tension [Saye and Sethian 2013]. Eulerian approaches are
particularly not feasible since discretization may overlook such thin
features of �lms. Recent works [Durikovic 2001; Zhu et al. 2014]
thus employ Lagrangian approaches and explicitly track surfaces
of �lms. Da et al. [2015] formulated �lm dynamics as surface-only
simulation of �lms using vortex sheets. Nonetheless, robust and
visually pleasing simulation of �lms is still challenging.
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We propose a new formulation of �lm dynamics that uni�es a
geometric view of �lms in mathematics into physics simulation of
�lms. Based on the study in mathematics, we formulate �lm dy-
namics as evolving area-minimizing surfaces. We observe that �lm
dynamics is closely related to a recently studied geometric �ow
called hyperbolic mean curvature �ow [Dexing et al. 2009; He et al.
2009; LeFloch and Smoczyk 2008]. Hyperbolic mean curvature �ow
is a variant of classical mean curvature �ow. Each point on an
evolving surface under hyperbolic mean curvature �ow is acceler-
ated in the direction of its mean curvature normal. We modify this
hyperbolic mean curvature �ow to be volume preserving, and show
that it is, in fact, equivalent to a simpli�ed form of the Navier-Stokes
equations for �lm dynamics under some plausible assumptions.
While it is tempting to adopt existing methods for mean curva-

ture �ow to solve our model, junctions where multiple �lms meet,
namely Plateau borders, become intractable since mean curvature is
unde�ned. We thus propose to replace mean curvature by the gradi-
ent of surface-area functional which is identical to mean curvature
in the absence of such borders. While the proof of this equivalence
has been known in di�erential geometry, we are the �rst to utilize
this fact to enable robust handling of otherwise intractable con�gu-
rations in geometric �ow. Since our formulation directly minimizes
surface area, the steady-state solutions of our model conform well
with Plateau’s laws. To summarize, our technical contributions are
as follows:
• Introduction of volume preserving hyperbolic mean curvature
�ow.
• A variational approach for surface area minimization and a

multiregional volume preserving technique, allowing us to treat
multiple �lms in a uni�ed manner.
• Fast, simple to implement, and accurate numerical solver for
�lm dynamics which is also consistent with Plateau’s laws.

We provide various experiments to analyze the properties of our
formulation. Figure 1 shows some of our results. Our work enables
an accurate simulation of �lms and foams that outperforms previous
approaches without additional complexity or computational cost.

2 RELATED WORKS
2.1 Animation of Soap Films
For years, visual simulation of �lms and foams has been extensively
studied in computer graphics. For tiny bubbles, researchers have
investigated various Eulerian–particle hybrid approaches since they
are small enough to be well represented by a collection of particles.
The seminal work of Hong et al. [2008] employs the particle level
set method and incorporates escaped particles as bubble particles
to simulate underwater bubbles. Busaryev et al. [2012] proposed to
use a volume-preserving weighted Voronoi diagram to approximate
the geometry of foams. Kim et al. [2007] successfully simulated
centimeter-scale bubbles and enabled explicit volume control by
extending the regional level set method [Zheng et al. 2006]. Unlike
these works, we focus on cases where deformation of individual
bubble surface is visible.
A more natural representation for thin �lms would be explicit

surface meshes. Da et al. [2015] proposed a novel vortex sheet model

for surface-only �lm simulation, where a scalar circulation quan-
tity is attached to surface meshes to drive the whole motion. In
such a surface-based simulation, handling merging, and splitting
of �lm surfaces is a non-trivial issue by itself. Durikovic [2001]
introduced a numerical technique to handle such phenomena and
Zhu et al. [2014] further improved this tracker, making an e�-
cient representation of geometrically complex simulation possible.
Given the success of these methods, we also evolve a mesh-based
on surface-only �lm simulation. We, however, propose a di�erent
formulation using geometric �ow.

2.2 Geometry and Flows
Geometry of �lms has been a long-lasting subject of interest among
researchers across a broad range of scienti�c �elds including mathe-
matics [Almgren and Taylor 1976] and engineering [Brew and Lewis
2003]. For instance, mathematicians examined the steady states of
soap bubbles, which exhibit di�erent visually aesthetic structures
depending on their initial con�gurations [Struwe 2014]. Such struc-
tures are driven by the area-minimization due to the surface tension
force [Boys 1958], and they are successfully applied for designing
architectures [Argyris et al. 1974]. We refer interested readers to a
book [Isenberg 1978] for an overview of the dynamics of soap �lms.
Our formulation is inspired by mathematical studies of �lms and
foams, especially those works on Plateau’s problem.

Plateau’s Problem. The shape of a soap �lm converges to a local
minimum of the area functional. The steady state is conjectured to
satisfy the geometric con�gurations described by empirical rules
called Plateau’s laws. Plateau’s problem mathematically formulates
this property as a minimization problem of surface area for given
boundaries, enclosed volumes, and connection of regions. Since
Plateau’s problem is an important subject in many �elds, it has
been studied over 200 years since Lagrange introduced it in 1760.
Hutchings [2002] determined the area minimized con�guration of
two connected bubbles often called "a double bubble", and proved
that it follows Plateau’s laws. Cases for more than two bubbles are
still unsolved.

Plateau’s problem is di�cult to solve even numerically. Researchers
have investigated various methods to handle speci�c scenarios of re-
spective con�gurations. Using mean curvature �ow, Pinkall [1993]
and Polthier [2002] successfully computed discrete minimal sur-
faces. Variants of a multiple regional level set method [Merriman
et al. 1994; Mohammad and Švadlenka 2002; Švadlenka et al. 2014]
addressed closed regions without open boundaries. There are some
tools [Brakke 1992; Pan et al. 2012] to investigate area-minimized
shapes in general settings by heuristically deforming surfaces, how-
ever, they do not guarantee convergence to the local minimum.
All of the above methods utilize the mean curvature �ow or its
variations and our method shares the same spirit.

Simply using a curvature �ow, however, does not fully solve Plateau’s
problem in general settings with constraints of enclosed volumes.
We analyze the main di�culties as follows. First, curvature �ows
are applicable only for a single surface since the surface normal
or the curvature is not de�nable for the intersection of surfaces
called non-manifold junctions. Second, volume preserving �ows
can be de�ned only for a single closed surface. Regional level set
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Volume correctionInitial state Intermediate state Next stateEvolution by �A/�x

Fig. 2. Overview of a time step. We first evolve the films by applying force on the points toward the negative directions of @A/@x . The volumes of closed
regions may decrease at this point. We next correct the volumes by pushing points toward the normals. The correction amount of each boundary film is
related with the pressure di�erence through the film.

methods may preserve volumes but cannot handle open surfaces.
We propose an equation and a computational algorithm that natu-
rally handles non-manifold junctions and preserves the enclosed
volumes of multiple regions. Seen as a geometry processing tool,
our method numerically solves Plateau’s problem for an arbitrary
union of closed and open surfaces.

Hyperbolic mean curvature �ow. Recently, hyperbolic variant
of mean curvature �ow named hyperbolic mean curvature �ow is
introduced in di�erential geometry [LeFloch and Smoczyk 2008]. It
directly models a vibrating membrane whose acceleration is given
only by mean curvature. We introduce hyperbolic mean curvature
�ow to computer graphics to simulate evolving �lms and foams.
Since original hyperbolic mean curvature �ow cannot be de�ned for
non-manifold junctions and does not preserve the inner volumes of
closed regions, we extend it to resolve these issues.

Curvature �ows for �uid dynamics. Recently, curvature �ows
are used in computer animation to describe phenomena caused by
strong surface tension. Thürey et al. [2010] used a volume preserv-
ing �ow to express complex behaviors of �uid surfaces such as
crown splash. Zhang et al. [2012] employed mean curvature �ow for
a surface-only simulation of small water droplets. Evolving a sur-
face toward the negative gradient of the area functional reduces the
surface area, which is equivalent to evolving under mean curvature
�ow. Misztal et al. [2014] utilized the property for simulating multi-
phase �ow of immiscible �uids. These methods assume that �uid
surfaces do not have non-manifold junctions. Our model also ac-
counts for surface tension force via a geometric �ow, and it extends
to non-manifold geometry.

3 OVERVIEW
Our key idea is to formulate dynamics of soap �lms using hyperbolic
mean curvature �ow. Hyperbolic mean curvature �ow is de�ned as

d2x

dt2
= ��H (x , t )n(x , t ), (1)

where d/dt , x , � , H , and n denote total derivative, position, a con-
stant, mean curvature, and the surface normal, respectively. Similar
to mean curvature �ow, the stationary solutions of this hyperbolic
variant are still minimal surfaces. This property is consistent with
the fact that the steady state of a soap �lm without trapped air is a

minimal surface. Hyperbolic mean curvature �ow is also known to
model an elastic membrane moving under the surface tension force
which closely resembles soap �lms [Yau 2000].

Hyperbolicmean curvature �ow, however, has been studiedmainly
in di�erential geometry as a geometric �ow and its application to
animation of soap �lms is unclear. Moreover, Equation (1) is not di-
rectly applicable to �lm dynamics since the mean curvature cannot
be de�ned on Plateau borders.

In order to handle non-manifold surfaces, we propose to replace
the mean curvature term with the variational derivative of the
area functional with respect to position denoted by @A (x )/@x . This
derivative is known to be equivalent to themean curvature normal of
smooth surfaces, and it naturally extends to non-manifold junctions
such as Plateau borders. To account for incompressible air trapped
by soap �lms, we include the pressure term �pn. Our �nal model
thus becomes

d2x

dt2
= �� @A (x )

@x
+ �pn (2)

where the constant � is equal to twice the surface tension coe�cient
as we show later. The �rst term on the right-hand side of Equation (2)
no longer poses complications associated with non-manifold struc-
tures since area is measurable regardless of the topology. As we
show later, our model can, in fact, be derived from the Navier-Stokes
equations, under the assumption of constant pressure per bubble
and the atmosphere. We note that this assumption is commonly
adopted for simulation of bubbles[Busaryev et al. 2012; Patkar et al.
2013; Zhu et al. 2014].

In our algorithm, we �rst numerically evaluate the area derivative
to evolve the surface meshes. Next, we assume that pressure is well
approximated by a constant per trapped region [Patkar et al. 2013;
Zhu et al. 2014]. Under this assumption, the pressure di�erence acts
only between adjacent regions, conveniently allowing us to perform
volume correction by only solving a small and sparse linear system
of which the degrees of freedom is the number of the enclosed
regions. Finally, we apply a symplectic integrator for time evolution.
Figure 2 illustrates the overall steps of our algorithm.

4 GEOMETRIC FLOW OF SOAP FILMS
We now explain our geometric �ow for �lm dynamics. In this paper,
a surface is a continuous map U ! R3 where U is a connected
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Fig. 3. Illustration of the extended cotangent matrix. We sum up the contri-
bution of all the Voronoi regions of the faces incident to the edges connecting
vertices i and j . This figure shows one of the three Voronoi regions.

subset ofR2. Films consist of manifold and non-manifold geometries.
A manifold point is a point that belongs only to a single surface.
A non-manifold junction is a point that belongs to two or more
surfaces. Especially, a triple-junction is an intersection of three
surfaces, called a Plateau border for soap �lms. A quad-junction
is an intersection of four surfaces. Almost every quad-junction
appearing in soap �lm dynamics is a point where four Plateau
borders meet.
A constant mean curvature (CMC) surface is a surface with the

same mean curvature everywhere. A minimal surface is a special
case of CMC surfaces with zero mean curvature. A minimal surface
locally minimizes its area, that is, any in�nitesimal smooth change
of the surface increases the area. According to Plateau’s laws, the
steady state of a soap �lm is a union of CMC and minimal surfaces.
For example, a double bubble with di�erent pressures consists of
three CMC surfaces. The steady state of a �lm between two rings
is a minimal surface also known as a catenoid. In general, a �lm
portion with di�erent air pressure on each side becomes a CMC
surface and equal pressure on both sides leads to a minimal surface.
Our model leverages this geometric relationship between soap �lms
and CMC/minimal surfaces for animation of �lms.

4.1 Variational Derivative of the Area Functional
It is well known that mean curvature is unde�ned on discrete sur-
faces since di�erentiation needs a continuous setting. Discrete dif-
ferential geometry circumvents this limitation by discretizing mean
curvature normal Hn as di�erentiation of the area functional, based
on the fact thatHn = @A/@x on a smooth surface (see Appendix A).
We found that this equality Hn = @A/@x naturally extends to even
non-manifold junctions, making our geometric �ow de�nable re-
gardless of con�gurations.
Both Hn and @A/@x have the following properties in common:

for an in�nitesimal smooth change of the surface, the change along
its direction gives the maximal area change, and the magnitude in-
dicates how di�erent the current shape is from the area-minimizing
con�guration. By acting force on each point toward the negative
direction of @A/@x , we can locally minimize the surface area. There-
fore, if Plateau’s laws as conjectures describing the geometric con-
ditions of the local minima of the area functional are true, our
formulation is automatically consistent with Plateau’s laws.

For a polygon mesh, we discretize @A/@x as follows. It is known
that mean curvature normal is discretized as HN = M�1LX where

Fig. 4. Regions of a double bubble. We correct the volume losses
of the closed domains �1, �2 by moving points of the boundaries
@�12, @�1Air , @�2Air toward the normals. We determine the correc-
tion amount for each boundary by solving two equations, �Vi =

Area (i, Air )di + Area (i, j ) (di � dj ) for (i, j ) = (1, 2) and (i, j ) = (2, 1).

matrices HN and X encode mean curvature normals and positions
of the vertices, M is the mass matrix, and L is the cotangent ma-
trix [Desbrun et al. 1999; Jacobson et al. 2013; Meyer et al. 2002].
Note that L is unde�ned for non-manifold vertices. Replacing L by
our extended cotangent matrix L0, we can de�ne @A/@x = M�1L0X .
Each entry of L0 is de�ned by,

L0i j =
8>>>><>>>>:

P
f

1
4A�oronoi cot(� ) for j 2 N (i )

�P
k,i Lik for j = i

0 otherwise
(3)

where N (i ) is the set of neighborhood vertices of i-th vertex and f
loops over faces incident to the edge connecting xi and x j , and �
is the opposite angle of the edge in f , and A�oronoi is the area of
Voronoi region (Figure 3). It is a natural extension since L0i j coincides
with Li j if the edge connecting vertices i and j is manifold. Our ex-
tended cotangent matrix is sparse similarly to the original de�nition.

4.2 Volume Preservation
Since hyperbolic mean curvature �ow is not a volume-preserving
�ow, volume loss occurs at each time step, which is incompatible
with soap �lm dynamics. We thus introduce the volume preserving
term �pn which, as we show later, is equivalent to the pressure
di�erence through the �lm with the assumption of incompressibility
and constant pressure per region.
Instead of explicitly solving for the pressure term, we correct

each enclosed volume by extending Müller’s technique [2009] for
multiple regions. In the original technique, the volume loss �V of
an enclosed region is corrected by moving each point on a surface
along its normal direction. The amount of correction per point is
given as a constant d = �V /A where A is the area of the region.
We extend this technique to handle multiple connected regions

by simultaneously preserving all enclosed volumes. In our setting,
the amount of correction for each boundary denoted by �d relates
to the pressure di�erence of the incident regions. We �rst solve a
linear system Ad = �V where d is a vector of coe�cients related
to the inner pressures, and �V = (V init

0 � V0, . . . ,V init
K � VK ) is a

vector of volume losses of K enclosed regions. The matrix A is

Ai j =

8>>>><>>>>:

�Area(i, j ) (regions i and j are adjacent)
Area(i,air ) +

P
k Area(i,k ) (j = i)

0 (otherwise)
(4)

ACM Transactions on Graphics, Vol. 36, No. 6, Article 199. Publication date: November 2017.



A Hyperbolic Geometric Flow for Evolving Films and Foams • 199:5

where Area(i, j ) is the area of the surface of the boundary domain
between i-th and j-th closed regions, and Area(i,air ) is the area of
the boundary domain between i-th closed region and the external
�uid such as air. Each area is computed as Area(i, j ) =

R
@�i j

ds for
each boundary surface @�i j . Note that A is always invertible.

Figure 4 shows an example of the boundary domains for two con-
nected bubbles. The amount of correction at each point is determined
by �d = d (re�ionl )�d (re�ions ) where re�ionl and re�ions are two
regions that the point belongs to. For non-manifold junctions, we
take the average of �dn over its neighborhoods. For regions of ex-
ternal air, we use d (air ) = 0. Appendix B gives a proof that this
extension corrects all the enclosed volumes.
The volume correction happens after moving vertices by the

acceleration d2x/dt2 = �� @A/@x . This operation is analogous to
computing the pressure term�pnwith the �rst-order approximation
for time.

4.3 Connection to Physics
Although Equation (2) appears to lack any physical interpretation, it
can be derived from the inviscid Navier-Stokes equations (Euler
equations) assuming that the �lm is in�nitesimally thin. The Euler
equations with the surface tension force are

Du

Dt
= ��H� (x )

�
n +

1
�
rp, (5)

where D/Dt , u, �, � , H , n, and p denote material derivative, the
velocity, �uid density, the surface tension strength, mean curvature,
surface normal, and pressure, respectively. The term � (x ) is the
Dirac delta function that acts only on the liquid interfaces, essen-
tially encoding the pressure discontinuity.
Integrating both sides of Equation (5) across a thin �lm gives

Z

�R

Du

Dt
dV =

Z

�R

✓
� �H� (x )

�
n +

1
�
rp

◆
dV , (6)

where �R denotes a small domain crossing the interfaces. The left-
hand side of the equation simply encodes the temporal change of
the velocity of the �lm crossing with the domain. Working with the
Dirac function on the right-hand side yields
Z

�R

✓
� �H� (x )

�
n +

1
�
rp

◆
dV = �2�Hn

�
+

Z

�R

1
�
rpdV . (7)

We have doubled the mean curvature term since the Dirac function
exists twice (e.g., � ( 12� ) and � (� 1

2� ) ) where � denotes the thickness
of the �lm) on air-liquid and liquid-air interfaces.
Assuming constant pressure for air, meaning that the pressure

gradient only exists within the �lm, the gradient theorem applied
to the second term of the above equation yields
Z

�R

1
�
rpdV = 1

�

I

@�R

pndS =
pfront � pback

�
n =

1
�
�pn, (8)

where @�R , pfront, pback, and n denote an in�nitesimal cylinder
across the boundary surface, the pressure at the front side, the pres-
sure at the back side, and the surface normal of the �lm, respectively.
In the limit of in�nitesimal �R , the integration domain �R ap-

proaches a point, allowing us to drop the integral from the left-hand
side of Equation (6). By using the relation Du/Dt = d2x/dt2, letting
� = 1, and de�ning � = 2� for simplicity, we arrive at Equation (2).

ALGORITHM 1: Time integration

(1) Move constrained vertices.
(2) Set intermediate velocities of free particles.

u 0 = u + �t (�� @A/@x + fext ).
(3) Evolve free particles to intermediate positions.

x 0 = x + �tu 0.
(4) Update positions by performing volume preservation,

x = x 0 + �dn.
(5) Update velocities.

u = u 0 + (�d/�t )n.
(6) Update the polygon mesh including topology change by LosTopos.
(7) Determine the velocities of newly generated vertices by

barycentric interpolation.

5 IMPLEMENTATION
5.1 Spatial Discretization
Weuse a trianglemesh to discretize �lms as in the previous work [Da
et al. 2015]. To handle topology changes, we use LosTopos pack-
age [Da et al. 2014], which is currently the only surface tracker
that can handle multi-regional surfaces with non-manifold junc-
tions. Since LosTopos requires regions to be closed and any trian-
gle to be incident to two di�erent regions, we use ghost vertices
and triangles that are out of the simulation. For a scene with sep-
arate open surfaces, we index 0, 1, 2, . . . ,M for open regions and
M + 1,M + 2, . . . for closed regions. We re-order the orientation of
triangles such that their normal vectors are always pointing out
towards the smaller number assigned to each region of air.

5.2 Time Integration
One time step of our time integration scheme is illustrated in Al-
gorithm 1. We take special care to compute the volume correction
vectors �dn for non-manifold junctions where normals are unde-
�ned. For triple-junctions, we average �dn of the incident manifold
vertices. For quad-junctions, we average �dn of the incident triple-
junctions. For junctions more than quad, we handle them in the
same way as quad-junctions. We, however, have never observed
such a junction in our simulation.

Overall, the total computational complexity is O (NT )+O (NR )+
O (NV ), where NV ,NT , and NR are the numbers of vertices, trian-
gles, and regions respectively. Each notation is de�ned as follows:
O (NT ) refers to the cost of computing the volumes and the surface
areas, O (NR ) cost for solving a sparse linear system, and O (NV )
for correcting vertices’ positions. We found that O (NR ) scales close
to proportional to the number of non-zero entries in the matrix.
We apply the �rst-order symplectic Euler method. We perform

the integration by computing the intermediate velocity u 0 and use
it to integrate the intermediate position x 0. Once we have computed
x

0, we perform volume correction.

6 RESULTS
We performed all of our examples on a Mac Pro with 3.5GHz Intel
Xeon E5. We organize our representative examples by topology
change, volume control, scenarios with external forces, computa-
tional timings, surface area transition, convergence accuracy to
Plateau’s laws, and a comparison to a real footage.
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Frame = 20 Frame = 21 Frame = 35

Frame = 44 Frame = 85 Frame = 145

Fig. 5. Foam of six bubbles. The top le� image is a foam at equilibrium.
A�er a bubble bursts at Frame 21, the foam gradually se�les down to the
next equilibrium state while oscillating.

A foam setup of Figure 5 highlights the ability of our method
to reproduce visually convincing soap �lms and foams with high
accuracy. The simulation took 149 msec per timestep on average.
For all the experiments, we employed constant time steps ranging
from 1 to 10 msec depending on the minimal volume of bubbles.
The volume change of regions was less than 0.1% over the course
of simulation. To visualize �lms, we extended the "thindielectric"
BSDF in Mitsuba renderer [Jakob 2010] to achieve the e�ect of thin
�lm interference. Figure 6 shows an example of a �lm strained by
two rings that is stretching and pinches o� as it contacts in the
center. With the aid of LosTopos surface tracker, our algorithm
naturally handles such topology changes.

Volume Control. Figure 7 shows an example of explicit volume
control due to the in�ation and the de�ation of a bubble. In this
example, the surfaces of �lms locally bounce for a while after the
volume control and gradually returns to the equilibrium state of a
spherical shape. We believe that such an example can be applied to
reproduce the other interesting e�ects of injecting or removing air
inside bubbles through a straw. We perform the volume control by
simply changing the volumes of the target bubbles at the beginning
of each time step.

External Forces. We point out that external forces such as gravity
forces are straightforward to incorporate in our model by simply
adding them to d2x/dt2 with (�� @A/@x ). In either case of vol-
ume control (Figure 7) and external forces (Figure 9), our operation
does not violate Plateau’s laws. Figure 8 shows an example of our
method coupled with a �uid simulator via external forces. For sim-
plicity, we employed Stable Fluids [Stam 1999], but our method is
not limited to any �uid solver. At the beginning of each time step,
we �rst advance the �uid solver and compute velocity and pressure
on grids. We then obtain the velocity v and the pressure p of the
air at an arbitrary position x through the trilinear interpolation.
When computing the intermediate velocity u 0, we simply add the

Fig. 6. Wireframe view of a strained film a�ached to two rings being
stretched one another. From le� to right: The film splits into two when
the thickness exceeds a critical point. Surface tension forces induce acceler-
ation and they drive the film to split apart and the films converge to two
flat discs.

Fig. 7. Transformation of film surfaces caused by a volume change. Le�: A
double bubble at equilibrium. Center le�: Volume changing by inflating the
le� region and deflating the right region. Center right: Each film component
becomes aspherical immediately a�er the volume change for a short while.
Right: The steady state a�er volume change. The boundary membrane is
pushed to the larger region since the smaller region has the greater pressure,
hence Plateau’s laws still hold.

pressure of the air by

u

0 = u + �t
 
�� @A
@x
+ p (v · n)n

!
. (9)

The �lm vertices receiving forces due to the wind are imposed to
have the negative inner product v · n. Figure 8 shows an example
of a bubble blown by the wind spouted out from the bottom.
In this example, we only accounted for one-way coupling from

the air to �lm. We believe that we can further two-way couple air
and �lm by replacing pressure on the grids inside bubbles with ones
computed during the volume correction phase.

6.1 Timings
We analyzed timings through a range of experiments and observed
that our method yields signi�cant performance improvement over
previous methods. Figure 10 illustrates a comparison with the
method of Da et al. [2015] for the same setups. Each timing includes
mesh processing by LosTopos in common. In this experiment, our
results were from 3 to 21 times faster than Da et al. [2015]. We, how-
ever, emphasize that our governing equation and the scheme are
quite di�erent from Da et al. [2015]. This comparison thereby serves
as a supplemental. In this experiment, we accelerated the method
of Da et al. [2015] with the fast multipole method (FMM) to improve
the runtime cost down to O (NV ) [Da et al. 2015].
Table 1 outlines timings of our individual simulation step. Cur-

rently, the surface evolution and the topological operations via
LosTopos surface tracker dominate the cost of the calculations. How-
ever, our method is not tied with any speci�c surface tracker, hence
we view this issue as orthogonal to our main contributions. We note
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Frame = 0 Frame = 80 Frame = 160 Frame = 240

Fig. 8. A bubble blown up by the wind. The pressure of the air simulated by
a fluid solver a�ects the bubble as an external force.

that "Others" are mostly spent for conversion operations that bridge
di�erent data types of LosTopos engine and Eigen Library [Guen-
nebaud et al. 2010] and thus can be sped up with further low-level
optimization.

Figure 11 compares the transition of our computational complex-
ity of two di�erent scenarios. The top row examines the rise of
complexity due to the increase of vertices by increasing the mesh
resolution. In the bottom row, we increased the number of regions
of cubes in each dimension. The computational cost of our method
scales closely to linear for both cases.

6.2 Analytical Solution and Numerical Convergence
We measured the time transition of surface area for two examples: a
double bubble and a catenoid (See Figure 13 top ), and observed that
the numerical solution slowly converges to the analytical solution as
expected. Figure 13 shows our results and the counterpart analytical
surface areas overlaid with striped lines.

The analytical surface area of the steady state of a double bubble is
Amin = 27� 2/3pV /9� for the volume of each representative region
V . We set up a single bubble vertically split at the center with V =
2.0612 and Amin = 14.803. The resulting converged area of our
simulation was 14.813.

Our next example is a catenoid, of which the closed-form solution
is given by

(x ,�, z) = (a cosh(�/a) cosu,a cosh(�/a) sinu,� ) ,

where a, b > 0, u 2 [0, 2� ), and � 2 [�b,b] denote arbitrary scalar
parameters. The analytical solution of the surface area is given
by �a2 (sinh(2b/a) + 2b/a). We set up a cylinder shaped surface
attached to the two solid rings on its edges with parameters set
a = 0.39565,b = 0.28, and Amin = 1.64895, respectively. The
resulting converged area of our simulation was 1.6511. We also
observed that the surface areas of both examples approach the
analytical solutions as we increase the mesh resolution.

6.3 Plateau’s Laws
Plateau’s laws state that three �lm surfaces meet at a triple-junction
at arccos(�1/2) = 120� and four triple-junctions meet at a quad-
junction at arccos(�1/3) ⇡ 109.47� [Ball 2009]. These geometric
conditions are essential for visually pleasing simulation of �lms. Ta-
ble 2 provides the list of errors of angles of triple/quad junctions. We
also provide the errors of the same experiments using the method

Fig. 9. Steady state of a film spanning a cubic frame. Le�: Without external
forces. Right: Under an extremely strong gravity (exaggerated twenty times).

of Brakke [1992] and Da et al. [2015] for reference. Note that dis-
cretization of the surface area for each vertex in Equation (10) of Da
et al. [2015] is not uniquely determined at non-manifold junctions.
The errors in T/Q (Da1) column are examples when each of the
areas is simply discretized using the incident triangles per region.
Fei [2017] pointed out that discretization as one-third of the total
area of the incident triangles divided by the number of incident re-
gions gives superior results because it eliminates mesh-dependence
and thereby corrects force imbalances arising from asymmetries in
the incident triangulations [Da et al. 2017]. Applying this discretiza-
tion, results improved to as in T/Q (Da2) column. We observed that
all the triple/quad-junction errors of our examples, including scenes
with external forces, were less than 2.0� and approached zero as the
mesh resolution increases.

6.4 Comparison with a Real Footage
Figure 12 shows a comparison with a real experiment recorded
using a high-speed camera [Pucci et al. 2015]. In this experiment, an
immersed soap bubble is slowly merging to a static soap �lm at the
bottom. We observe that the result of our model resembles the real
footage for a long duration. The subtle di�erence is due to the loss
of kinematic energy caused by the way we use the surface tracker
as we discuss later.

7 DISCUSSION
Computational complexity. Aswe noted before, the computational

complexity of our algorithm is O (NT )+O (NV )+O (NR ). This order
can be approximated simply by O (NV ) since NT is linear to NV in
most cases, and the computational cost of volume correction is much
less than the surface evolution by @A/@x even with a large number
of regions. While another formulation by Da et al. [2015] can be
made to achieve the same linear computational complexity using
the fast multipole method, the computational complexity of our
formulation is intrinsically linear without any additional numerical
technique. In our current implementation, the computation time
is dominated by LosTopos. Since our model is independent of the
surface tracker, we expect that a more e�cient surface tracker can
potentially accelerate the overall computation signi�cantly. We,
however, found that LosTopos is currently the best option for our
purpose.
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Target Vertices Faces Regions TPF (Ours) TPF (Da) Ratio
Single cubic bubble 1003 2002 2 24.70 179.72 7.3
Double bubble 1792 3626 3 68.76 526.83 7.7
125 latticed bubbles 6702 16192 126 160.22 3402.61 21.2
Film spanning a frame 2679 5742 8 431.647 1323.91 3.1
Catenoid 1346 2688 2 69.17 221.25 3.2
Six bubbles 4882 9972 7 149.04 2570.16 17.2

Fig. 10. Comparison of timings per frame for various film examples to Da et al. [2015]. Vertices, Faces, and Regions refer to the number of the initial vertices,
faces, and regions, respectively. TPF is the computational time per frame (ms), and Ratio is the ratio of computational timings TPF (Da) / TPF (Ours). The
figure on the right side illustrates the timings of the results in the list. Films A, B, C, and D are a double bubble, a foam of six bubbles, 125 la�ice-configured
bubbles, and a film spanning a frame respectively.

Table 1. Timings per frame by simulation component (ms). The list is ordered
as follows: the total computational time, the evolution by @A/@x , volume
correction, mesh processing by LosTopos, and remaining operations.
Target Total @A/@x VC LosTopos Others
Single cubic bubble 24.70 1.01 0.01 20.98 2.71
125 latticed bubbles 160.22 2.63 1.08 148.39 8.12
Six bubbles 149.04 4.04 1.02 135.94 8.05

Fig. 11. Complexity analysis by di�erent discrete variables. Up: Timings
due to the increase of the number of vertices on surfaces (maximal number
6291458). Bo�om: Timings due to the increase of number of regions (maximal
number 4913). Notice that both draw closely linear curves.

Fig. 12. Time sequence of a soap bubble being trapped in a planar film. Up:
Experiment by Pucci et al. [2015]. Bo�om: Our simulation.

Fig. 13. Top: Initial states of a double bubble and a catenoid and their steady
states. Middle and bo�om: Surface area transition of films. Striped lines
show their corresponding analytical solutions.

Table 2. List of errors of the angles on non-manifold junctions from Plateau’s
laws. In the list, T denotes the root mean square (RMS) of the di�erences be-
tween arccos(�1/2) and the dihedral angles of the faces incident to Plateau
borders, and Q denotes the RMS of the di�erences between arccos(�1/3)
and the angles of the Plateau borders intersecting at quad-junctions.

Target T/Q (Ours) T/Q (Brakke) T/Q (Da1) T/Q (Da2)
Double bubble 1.53� 1.40� 14.67� 3.62�
Film spanning a frame 0.60�/0.67� 1.80�/2.27� 4.04�/5.77� 1.84�/3.68�
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Alternative Numerical Solvers. To compute intermediate quan-
tities, we can apply an implicit scheme instead of symplectic Eu-
ler [Desbrun et al. 1999]. We observed that the implicit scheme
allows us to increase the time step by a factor of ten at most, but it
was not necessarily numerically more stable in our implementation
due to some additional parameters.

Another alternative approach would be to compute the next posi-
tion and the velocity by computing � @A/@x and �pn in a strongly
coupled manner without computing intermediate quantities. Since
our model is not analytically di�erentiable, the Newton-Raphson
method is not applicable. Hence, the bisection method is an option
for seeking the value �p that preserves the enclosed volumes. We,
however, expect that such a scheme would increase the computa-
tional complexity to as much as O (2NR ), and we view this as too
expensive for a large number of bubbles.

Connection to physics. We showed a theoretical connection be-
tween our governing equation and the Navies-Stokes equations.
This is valid only for manifold surfaces at this moment. We believe
that generalizing quantities such as surface normal for junctions
extends it to non-manifold cases.

Di�erent scenarios. Da et al. [2015] demonstrated scenarios where
a double bubble is pulled apart and bubbles are generated from a
sweeping wire ring. We note that our method can also handle such
settings without di�culties. When bubbles are split, we just need to
reassign the region labels of the triangles consisting of the boundary
surface. In our implementation, this process is automatically done
by LosTopos. For the latter scenario, we add a region for the newly
generated bubble and compute its initial volume.

Limitations. In comparison to a mesh based simulation of �uid
surfaces that takes thickness of �lms into account [Zhu et al. 2014],
we regard the �lm to be in�nitesimally thin. Our model thus can-
not simulate the moment of burst of bubbles or temporal color
change of liquid surface. We expect that incorporation of liquid
simulation on deformable surfaces would enable simulation of such
phenomena using our model.

When a surface tracker generates a new vertex by edge collapse
or split, we interpolate velocities of neighboring vertices by barycen-
tric interpolation. Alternatives for more accurate interpolations are
higher-order approximations such as spline interpolation and Her-
mite interpolation. We found that, however, a small amount of
energy loss occurs with any of the higher-order alternatives men-
tioned above , because a naive interpolation of vectors with di�erent
directions decreases its magnitude, similarly to triangle inequality
for two vectors. We have not found an e�ective solution which
can preserve local energy around a newly generated vertex. Energy
preserving interpolation of a vector �eld on a triangle mesh is an
interesting topic for future work.
Our current implementation is not unconditionally stable. We

speculate that themaximum timestep size is proportional to themax-
imal edge length and the inverse of themaximal value of @A/@x .We,
however, have not analyzed the CFL condition or relevant condition
for stability since such an analysis depends on several complex fac-
tors such as discretization and the stability of a surface tracker. We

also observed that LosTopos becomes unstable if there are signi�-
cant changes in a triangle mesh. We thus add some damping to avoid
a sudden change for a large time step. A di�erent discretization step
with an improved surface tracker can potentially resolve this stabil-
ity issue. This issue is independent of our theoretical formulation
of �lm dynamics as a geometric �ow.

8 CONCLUSIONS
We introduced an extension of hyperbolic mean curvature �ow to
simulate dynamics of �lms and foams. Unlike previous works, we
start from the observations made by Plateau to construct a geomet-
ric �ow which precisely captures the properties of the steady-state
shapes of soap �lms. We generalized a geometric �ow to consis-
tently handle an arbitrary combination of open boundaries, enclosed
volumes, and connectivity of regions, that are crucial for robust sim-
ulation of �lms and foams. We showed that the resulting geometric
�ow is closely related with the Navier-Stokes equations. The main
advantages of our model are the computational speed and the con-
vergence of the �lms following Plateau’s laws. Our method also
enables explicit volume control and the straightforward addition of
external force, allowing for new physics phenomena such as �oating
bubbles blown by the wind and then slowly fall due to the gravity.

For Plateau’s problem, our model provides a uni�ed solution as an
area-minimizer without heuristic operations. Moreover, it solves a
generalized version of Plateau’s problem in the presence of external
forces. We believe that it can open up lots of opportunities across
di�erent �elds, similarly to the fact that another generalization of
the Plateau’s problem, called Plateau-Kirchho� problem [Giomi and
Mahadevan 2012] led to numerous follow-up works [Giusteri et al.
2017; Perez et al. 2017]. Since our model can also be seen as a general
geometric �ow, future work includes applications to problems in
geometry processing such as �nding CMC surfaces for architectural
design.
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A MEAN CURVATURE AND VARIATIONAL DERIVATIVE
OF THE AREA FUNCTIONAL

A handful of books on Riemannian geometry and mean curvature
�ow [Berger and Gostiaux 2012; López 2013; Mantegazza 2011]
provide proofs of the equivalence between mean curvature normal
and the variational derivative of the area functional. However, their
proofs are targeted for a Riemannian manifold with any dimension
and not immediately clear how it relates to our setups. To this end,
we provide a sketch of a proof for a special case of surfaces in
three-dimensional Euclidean space. We �rst �x our de�nitions and
notations. The area functional for a surface S : U ! R3 is de�ned
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as
A (S ) =

Z

�
ds =

Z

U
|Su ⇥ S� |dud� (10)

where � = S (U ). Using a continuous map V : U ! R3, we can
de�ne a family of surfaces S� = S +�V parametrized by a parameter
� 2 (�E,E) for a small positive number E. For each � , we write
L2 (�� ) for the space consisting of square-integrable functions on
�� = S� (U ). The variational derivative of the area functional on S
is then de�ned by

@A
@x
⌘ arg max
kV k=k

d

d�

�����=0A (S� ) (11)

where kV k is the total speed de�ned by (
R
� |V |2ds )1/2 and k is a

real constant. To uniquely de�ne @A/@x , we here set k = kH k with
a norm in L2 (�) de�ned by kH k = (

R
� |H |2ds )1/2.

P���� �� @A/@x = Hn. Let S,V , S� be as above. We can decom-
pose V into the normal and the tangential part as V = V?n +VT

t .
The �rst variation formula states

d

d�

�����=0
Z

��
ds� =

Z

�
V?Hds (12)

where �� and ds� are the domain of integration and the area ele-
ment for S� . Note that the operation F : �,h ! R

� �(s )h(s )ds is an
inner product of L2 (�). Therefore we can apply the Cauchy-Schwarz
inequality to the right-hand side of Equation (12), and obtain,

hH ,V?i  kH kkV?k. (13)

Equality holds if and only if V? = CHH for a constant CH . There-
fore, V 0 = CHHn maximizes the �rst variation among continuous
mapsV : U ! R3 with kV k = C for a positive constantC . By taking
C = kH k, we have CH = 1 and obtain

arg max
kV k=kH k

d

d�

�����=0A (S� ) = Hn. (14)

⇤

B PROOF OF VOLUME PRESERVATION
We here prove that moving each point by �dn with �d as in Sec-
tion 4.2 corrects all the enclosed volumes for �rst-order approxima-
tion. This means,

1
3

Z

@�0i
(x + �dn) · n0ds 0 ⇡ Vi + �Vi (15)

where @�0 = S 0(U ),n0 = S 0u⇥S 0�/|S 0u⇥S 0� |, andds 0 = |S 0u⇥S 0� |dud�
are the domain of integration, the unit normal, and the area element
for the variational surface S 0 ⌘ S + �dn.

P����. We �rst show that the left-hand side of Equation (15) is
approximated to Vi +

R
@�i

�d ds . We note that non-manifold junc-
tions do not contribute to the integral since the set of non-manifold
junctions is of measure-zero with respect to the area element ds .
We have,

S 0u ⇥ S 0� = (Su + �dnu ) ⇥ (S� + �dn� )

= Su ⇥ S� + �dnu ⇥ S� + �dSu ⇥ n� + (�d )2nu ⇥ n�
=

⇣
1 + �d (A + D) + (�d )2 (AD � BC )

⌘
Su ⇥ S� . (16)

In the above, we employed Weingarten equations [Kreyszig 1991]
nu = ASu + BS� and n� = CSu + DS� where the coe�cients are
given by

*....
,

A
B
C
D

+////
-
=

1
|Su ⇥ S� |2

*....
,

(Su · S� ) (Su� · n) � (S� · S� ) (Suu · n)
(Su · S� ) (Suu · n) � (Su · Su ) (Su� · n)
(Su · S� ) (S�� · n) � (S� · S� ) (Su� · n)
(Su · S� ) (Su� · n) � (Su · Su ) (S�� · n)

+////
-
.

Hence, it holds ds 0 =
⇣
1 + �d (A + D) + (�d )2 (AD � BC )

⌘
ds and

n

0 = n. Using these relations, we have
1
3

Z

@�0i
(x + �dn) · n0ds 0 (17)

=
1
3

Z

@�i
(x · n + �d )

⇣
1 + �d (A + D) + (�d )2 (AD � BC )

⌘
ds .

Regarding (�d )2 = 0, the above equation is approximated to
1
3

Z

@�i
x · nds + 1

3

Z

@�i
�d (1 + (A + D)x · n) ds

= Vi +

Z

@�i
�d ds . (18)

In the above, we used the relations that A + D = 2H with mean
curvature H , and

R
@�i

Hx · nds = R
@�i

ds under the assumption
that @�i is a closed surface [Kreyszig 1991].
We �nally claim

R
@�i

�d ds = �Vi by the de�nition of �d . It
holdsZ

@�i
�dds =

Z

@�i,air
dids +

X

j,i

Z

@�i, j
(di � dj )ds

= diArea(i,air ) +
X

j,i
(di � dj )Area(i, j )

= diAii +
X

j,i
djAi j =

X

j
djAi j . (19)

Since Ad = �V , we have dj = (A�1�V )j =
P
k A
�1
jk�Vk . Substitut-

ing this into Equation (19), we obtain
X

j
djAi j =

X

j
Ai j

X

k
A�1jk�Vk

=
X

k
�Vk

X

j
Ai jA

�1
jk =

X

k
�Vk�ik = �Vi . (20)

Hence, the enclosed volume of region �i is corrected for �rst-order
approximation. ⇤

REFERENCES
Frederick J Almgren and Jean E Taylor. 1976. The geometry of soap �lms and soap

bubbles. Scienti�c American 235 (1976), 82–93.
Luigi Ambrosio. 2015. Regularity theory for mass-minimizing currents (after Almgren-

De Lellis-Spadaro). Calculus of Variations and Geometric Measure Theory (2015),
1–23.

John H Argyris, T Angelopoulos, and Bruno Bichat. 1974. A general method for the
shape �nding of lightweight tension structures. Computer Methods in Applied
Mechanics and Engineering 3, 1 (1974), 135–149.

Philip Ball. 2009. Shapes: Nature’s Patterns: A Tapestry in Three Parts (Natures Patterns).
In Shapes: Nature’s Patterns: A Tapestry in Three Parts (Natures Patterns). Oxford
University Press, Oxford,UK, 97–98.

Marcel Berger and Bernard Gostiaux. 2012. Di�erential Geometry: Manifolds, Curves,
and Surfaces: Manifolds, Curves, and Surfaces. Vol. 115. Springer Science & Business
Media, New York, NY, USA.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 199. Publication date: November 2017.



A Hyperbolic Geometric Flow for Evolving Films and Foams • 199:11

CV Boys. 1958. Soap-Bubbles, their colors and forces which mold them (1890). (1958).
Kenneth A. Brakke. 1992. The Surface Evolver. Experimental Mathematics 1, 2 (1992),

141–165.
JS Brew and WJ Lewis. 2003. Computational form-�nding of tension membrane

structures-Non-�nite element approaches: Part 1. Use of cubic splines in �nding min-
imal surface membranes. International journal for numerical methods in engineering
56, 5 (2003), 651–668.

Oleksiy Busaryev, Tamal K. Dey, Huamin Wang, and Zhong Ren. 2012. Animating
bubble interactions in a liquid foam. ACM Trans. Graph. 31, 4 (2012), 63.

Fang Da, Christopher Batty, and Eitan Grinspun. 2014. Multimaterial Mesh-Based
Surface Tracking. ACM Trans. on Graphics (SIGGRAPH 2014) 33 (2014), 1–11.

Fang Da, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2015. Double Bubbles
Sans Toil and Trouble: Discrete Circulation-Preserving Vortex Sheets for Soap Films
and Foams. ACM Trans. on Graphics (SIGGRAPH 2015) 34, 4 (2015), 149:1–149:9.

Fang Da, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2017. Project page
of "Double Bubbles Sans Toil and Trouble: Discrete Circulation-Preserving Vor-
tex Sheets for Soap Films and Foams". (2017). http://www.cs.columbia.edu/cg/
doublebubbles/

Fang Da, Christopher Batty, Chris Wotjan, and Eitan Grinspun. 2015. Use of Fast
Multipole to Accelerate Discrete Circulation-Preserving Vortex Sheets for Soap
Films and Foams. (2015), 2.

Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H. Barr. 1999. Implicit Fairing
of Irregular Meshes Using Di�usion and Curvature Flow. In Proceedings of the 26th
Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’99).
ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 317–324.

Kong Dexing, Liu Kefeng, and Wang Zenggui. 2009. Hyperbolic mean curvature �ow:
evolution of plane curves. Acta Mathematica Scientia 29, 3 (2009), 493–514.

Jesse Douglas. 1931. Solution of the problem of Plateau. Trans. Amer. Math. Soc. 33, 1
(1931), 263–321.

Roman Durikovic. 2001. Animation of Soap Bubble Dynamics, Cluster Formation and
Collision. Comput. Graph. Forum 20, 3 (2001), 67–76.

Raymond Yun Fei. 2017. Personal communication. (Aug. 2017).
Luca Giomi and Lakshminarayanan Mahadevan. 2012. Minimal surfaces bounded

by elastic lines. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 468, 2143 (mar 2012), 1851–1864.

Giulio G Giusteri, Luca Lussardi, and Eliot Fried. 2017. Solution of the Kirchho�–Plateau
problem. Journal of Nonlinear Science 27, 3 (2017), 1043–1063.

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org. (2010).
Jenny Harrison. 2014. Soap �lm solutions to Plateau’s problem. Journal of Geometric

Analysis 24, 1 (2014), 271–297.
Jenny. Harrison and Harrison Pugh. 2015. Plateau’s Problem: What’s Next. ArXiv

e-prints (Sept. 2015), 27. arXiv:1509.03797
Chun-Lei He, De-Xing Kong, and Kefeng Liu. 2009. Hyperbolic mean curvature �ow.

Journal of Di�erential Equations 246, 1 (2009), 373–390.
Jeong-Mo Hong, Ho-Young Lee, Jong-Chul Yoon, and Chang-Hun Kim. 2008. Bubbles

alive. ACM Trans. Graph. 27, 3 (2008), 48:1–48:4.
Michael Hutchings, Frank Morgan, Manuel Ritoré, and Antonio Ros. 2002. Proof of the

double bubble conjecture. Annals of Mathematics 155, 2 (2002), 459–489.
Cyril Isenberg. 1978. The science of soap �lms and soap bubbles. Courier Corporation,

North Chelmsford, Massachusetts, USA.
Alec Jacobson, Daniele Panozzo, et al. 2013. libigl: A simple C++ geometry processing

library. (2013). http://igl.ethz.ch/projects/libigl/.
Wenzel Jakob. 2010. Mitsuba renderer. (2010). http://www.mitsuba-renderer.org.
Byungmoon Kim, Yingjie Liu, Ignacio Llamas, Xiangmin Jiao, and Jarek Rossignac. 2007.

Simulation of Bubbles in Foam With The Volume Control Method. ACM Trans. on
Graphics (SIGGRAPH 2007) 26, 3 (2007), 10.

Erwin Kreyszig. 1991. Di�erential geometry. Dover Publications, New York.
Philippe G LeFloch and Knut Smoczyk. 2008. The hyperbolic mean curvature �ow.

Journal de mathématiques pures et appliquées 90, 6 (2008), 591–614.
Rafael López. 2013. Constant mean curvature surfaces with boundary. Springer Science

& Business Media, New York, NY, USA.
Carlo Mantegazza. 2011. Lecture notes on mean curvature �ow. Vol. 290. Springer

Science & Business Media, New York, NY, USA.
Barry Merriman, James K. Bence, and Stanley J. Osher. 1994. Motion of Multiple

Junctions: A Level Set Approach. J. Comput. Phys. 112 (1994), 334–363.
Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H. Barr. 2002. Discrete

Di�erential-Geometry Operators for Triangulated 2-Manifolds. (2002).
Marek Krzysztof Misztal, Kenny Erleben, Adam Bargteil, Jens Fursund, Brian Bunch

Christensen, Jakob Andreas Bærentzen, and Robert Bridson. 2014. Multiphase
�ow of immiscible �uids on unstructured moving meshes. IEEE transactions on
visualization and computer graphics 20, 1 (2014), 4–16.

Rhudaina Z. Mohammad and Karel Švadlenka. 2002. Proof of the double bubble conjec-
ture. Ann. Math (2002), 0406017.

Matthias Müller. 2009. Fast and robust tracking of �uid surfaces. In Proceedings of the
2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’09).
ACM, New York, NY, USA, 237–245.

Hao Pan, Yi-King Choi, Yang Liu, Wenchao Hu, Qiang Du, Konrad Polthier, Caiming
Zhang, and Wenping Wang. 2012. Robust Modeling of Constant Mean Curvature
Surfaces. ACM Trans. Graph. 31, 4, Article 85 (July 2012), 11 pages.

Saket Patkar, Mridul Aanjaneya, Dmitriy Karpman, and Ronald Fedkiw. 2013. A hybrid
Lagrangian-Eulerian formulation for bubble generation and dynamics. In The ACM
SIGGRAPH / Eurographics Symposium on Computer Animation, SCA ’13, Anaheim,
CA, USA, July 19-21, 2013. ACM Press, New York, NY, USA, 105–114.

Jesus Perez, Miguel A. Otaduy, and Bernhard Thomaszewski. 2017. Computational
Design and Automated Fabrication of Kirchho�-Plateau Surfaces. ACM Trans. on
Graphics (Proc. of ACM SIGGRAPH) 36, 4 (2017), 62.1–62.12.

Ulrich Pinkall and Konrad Polthier. 1993. Computing Discrete Minimal Surfaces and
Their Conjugates. Experimental Mathematics 2 (1993), 15–36.

Konrad Polthier andWayne Rossman. 2002. Discrete Constant Mean Curvature Surfaces
And Their Index. In Visualization and Mathematics. Springer Verlag, 47–77.

Thomas R Powers, Greg Huber, and Raymond E Goldstein. 2002. Fluid-membrane
tethers: minimal surfaces and elastic boundary layers. Physical Review E 65, 4 (2002),
041901.

Giuseppe Pucci, Daniel M Harris, and John WM Bush. 2015. Partial coalescence of soap
bubbles. Physics of Fluids 27, 6 (2015), 061704.

Tibor Rado. 1930. On Plateau's Problem. The Annals of Mathematics 31, 3 (jul 1930),
457.

Robert I. Saye and James A. Sethian. 2013. Multiscale Modeling of Membrane Re-
arrangement, Drainage, and Rupture in Evolving Foams. Science 340, 6133 (2013),
720–724.

Jos Stam. 1999. Stable Fluids. In Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 121–128.

Michael Struwe. 2014. Plateau’s Problem and the Calculus of Variations.(MN-35). Prince-
ton University Press, Princeton, New Jersey, USA.

John M Sullivan and Frank Morgan. 1996. Open problems in soap bubble geometry.
International Journal of Mathematics 7, 06 (1996), 833–842.

Jean E Taylor. 1976. The structure of singularities in soap-bubble-like and soap-�lm-like
minimal surfaces. Annals of Mathematics 103, 3 (1976), 489–539.

Nils Thürey, Chris Wojtan, Markus Gross, and Greg Turk. 2010. A multiscale approach
to mesh-based surface tension �ows. ACM Transactions on Graphics 29, 4 (2010), 10.

Karel Švadlenka, Elliott Ginder, and Seiro Omata. 2014. A variational method for
multiphase volume-preserving interface motions. J. Comput. Appl. Math. 257 (2014),
157–179.

Shing-Tung Yau. 2000. Review of geometry and analysis. Mathematics: frontiers and
perspectives (2000), 353–401.

Yizhong Zhang, Huamin Wang, Shuai Wang, Yiying Tong, and Kun Zhou. 2012. A
deformable surface model for real-time water drop animation. IEEE Transactions on
Visualization and Computer Graphics 18, 8 (2012), 1281–1289.

Wen Zheng, Jun-Hai Yong, and Jean-Claude Paul. 2006. Simulation of Bubbles. In
Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation (SCA ’06). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland,
325–333.

Bo Zhu, Ed Quigley, Matthew Cong, Justin Solomon, and Ronald Fedkiw. 2014. Codi-
mensional surface tension �ow on simplicial complexes. ACM Transactions on
Graphics (TOG) 33, 4 (2014), 111.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 199. Publication date: November 2017.

http://www.cs.columbia.edu/cg/doublebubbles/
http://www.cs.columbia.edu/cg/doublebubbles/
http://arxiv.org/abs/1509.03797

	Abstract
	1 Introduction
	2 Related Works
	2.1 Animation of Soap Films
	2.2 Geometry and Flows

	3 Overview
	4 Geometric Flow of Soap Films
	4.1 Variational Derivative of the Area Functional
	4.2 Volume Preservation
	4.3 Connection to Physics

	5 Implementation
	5.1 Spatial Discretization
	5.2 Time Integration

	6 Results
	6.1 Timings
	6.2 Analytical Solution and Numerical Convergence
	6.3 Plateau's Laws
	6.4 Comparison with a Real Footage

	7 Discussion
	8 Conclusions
	Acknowledgments
	A Mean Curvature and Variational Derivative of the Area Functional
	B Proof of Volume Preservation
	References

