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Review of the previous lectures

Previously, we learned the concept of compressed sensing:

In a real situation, we want to know the information of a signal from
measurements. Intuitively, we need all the measurements to obtain the
signal. However, we can likely recover the signal from partial
measurements via £y or /1 minimization problems.

A fundamental question is:

When is a recovery possible? J
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Main theorem review

Our goal is to prove this probabilistic result.

Theorem 3.1 (Candes, Romberg, and Tao [ ])

Let f € CN be a signal, and Q be the random set, and M be an accuracy
parameter. If f is supported on T C {0,...,N — 1} and,

E(I2]) > | T|log N/a(M), (3.1)

then, f can be exactly recovered from Q and f|q with probability at least
1 — O(N—M) as the unique minimizer of the {1-problem,

min b= t), & = flq. 3.2
gecNHglll thlg()\ gla =fla (3:2)

V.
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The dual problem

Last time, we learned a dual problem:

Theorem 3.2

Let Q C {0,...,N —1}. For a signal f € CN with supp(f) = T. Suppose
Fr1_q Is injective and there exists a polynomial P s.t.

P(t) = sign(f)(t) := f(t)/|f(t)] forte T, (3.3)
|P(t)] <1 fort¢ T, (3.4)

and
P(w)=0 forw ¢ Q. (3.5)

Then, there exists a unique minimizer of the ¢1-problem, which equals to f.
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Load map to the proof

We constructed a polynomial P as a candidate of the one stated in the
theorem,

1

P (1 M) - ’é'z H)~ Y sign(f) (3.6)

where H: CT — CN is defined by

Z Z 71&) (t—t) (37)

we t'eT:t'#t

and 2: CT = CN, +*: CN — C7 are the inclusion and the restriction.
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Load map to the proof

We checked

P=0 onQ°
and that the invertiability of
17— ‘Q|Z H= @.FT‘}Q Froa

implies the injectivity of F1_.q.

(3.8)

(3.9)

(3.10)
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Load map to the proof

Our task is now to verify
© Invertiability of +*1 — ﬁz*H
@ |P|<lon T€
with probability at least 1 — O(N—M).

Today's contents

We prove 1 and some results for 2.
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Matrix norms

Let M be a n x m complex valued matrix. We use the following norms.

[nfinity norm

Operator norm

Frobenius norm

M|l := m?XZWuL (3.11)
j
M| := HsHupl | Mx||2, (3.12)
X|l2=

M= [SIMgR (313)

Note all matrix norms are equivalent. Namely, convergence in one norm
means convergence in all the norms. The space of matrices equipped with

these norms is complete (Banach).
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Properties of ||-||

o |[A+ By < |All + [1Blloo
o [|AB|[o < [[Alloo Bl
o [|All = supjx_ =1 [IAX]l
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Properties of |||

o [A+ B[ <[Al+IBl

o [[AB| < [IA[l]IBI|

o [[A*]| = [lAl

o ||A%|| = ||A|]” if A'is self adjoint
o max; [Ai| < [|A]
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Properties of |||

o [[Allp = /Tr(A*A)

o [A+ Bl < [IAlg+ 1Bl (HW)
o [IAB||f < ||All¢IIBllF (HW)

o [|A] < |IAllf

o [l < #col(A)||All -
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Properties of matrix norms

Let A be a self-adjoint matrix. Then

42| = 1Al (3.14)

Proof It is immediate that,

[4%] < 1Al 1Al = (A7 (3.15)
The other inequality is by the Cauchy-Schwartz inequality,

IAI? = sup [|Ax|3 = sup [(Ax,Ax)| = sup |[(A"Ax,x)| (3.16)

Ixll2=1 Ixll2=1 Ixll2=1
< sup [|A"Ax||a]lx]|2 = (1A (3.17)
Ixll2=1
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Properties of matrix norms

For a matrix A,

Al < TIAllg - (3.18)

Proof For any vector x, ||x||2 = ||x||¢ by definition. Therefore we have,
|Al = sup [[Ax[2 = sup [|Ax|lF < sup [[Allgllx]lF = [[Allg-

[Ixll2=1 lIx|lF=1 lIx[lF=1

(3.19)
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Our strategy

To prove the invertiability of 2*2 — @z *H, we show

—1"H (3.20)

] <

with a higher probability than we need. To see why, we know that
max |\l < |M]| (3.21)

for any matrix M.} Then the eigenvalues of /| — M is bounded by
1 — maxk |Ax| and 1+ maxg [ Ak

In fact the equality holds in our case since +* H is self adjoint.
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Neumann Series

Moreover, we can explicitly find (2*2 — ﬁz*H)_l as a Neumann series,
which will be useful when we show the boundeddness of |P|.

Proposition 3.1 (The Neumann Series)

Let M be a square matrix. Then ||M|| < 1 implies that 3>  M"
converges and equals to (I — M)~L.
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Neumann Series

Proof We first show the existence of the limit. Due to the completeness
of the space, it suffices to prove that the partial sum

n
Spi=Y) M (3.22)
i=0
is a Cauchy series in ||-||. For k and / with k > |,
koo k . K .
1Sk =Sill = [ D M < Y Ml < > (M)
i=1+1 i=I+1 i=l+1
—gmpr S IMIET) o sk s oo

1—[[M]|

Due to the equivalence of norms, this implies the convergence in max || - ||
norm i.e. all entries converge. Hence S :=lim,,_, S, exists.
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Neumann Series

We then show S = (I — M)~1. First,
n+1 ) n+1 )
MS,=> M ="M —1=5,1—1
i=1 i=0
From this, it follows

IMS — (S = 1)]| = IMS — MS, + (Sn1 — 1) — (S — 1)
< [MS — MS, | + [[(So1 — 1) = (S = )]
< [M][[IS = Sall + 1S — S|l = 0.

Hence, we obtained
I =5—MS=S5(-M).

By doing the same with S,M, we get | = (I — M)S.

(3.23)

(3.24)
(3.25)
(3.26)

(3.27)
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Strategy review

We hereby denote Hy := +*H for simplicity.

In order to prove the invertiability of +*2 — ﬁHo for a probability at least
1 — O(N=M), our goal is to show ||Ho| < |Q| for an equally high
probability.
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Decomposition of events

We would like to attain
P(||Holl > 1]) < O(N~M). (3.28)

For this purpose, we consider a decomposition of events

{I[Holl = 122[} ={(1 — em)TN = [[Hol| = |2[} (3.29)
U{l[Holl = (1 — em)TN > [Q} (3.30)
U{l[Holl = [ = (1 — em)TN} (3.31)
where
em = QMT'%N (3.32)

Note 7N = E (|Q2]) since Q is defined using Binominal distribution. Our
goal is to see the probability of each event set is bounded to O(N—M).

19/ 44



Decomposition of events

Regarding the first set, we note that
{(1 —em)TN = |[Holl > |2]} € {(1 —em)TN > |}
and we already obtained
B((1— en)7N > [Q]) < O(N-M)

in the last lecture.

(3.33)

(3.34)
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Decomposition of events

Regarding the second and the thrid set,
{IIHoll = (1 —em)TN = [Q}, {l|Holl = [22] = (1 — em)TN},  (3.35)

their union is contained in
{[[Hol| = (1 — em)TN}. (3.36)

We aim to see the probability measure of this set is bounded by O(N—M).

21/44



Load map to upper bound

To obtain an upper bound of P (||Ho|| > (1 — ep)7TN), we concern
E (Tr(HZ™)). This is because

P(IHoll = (1 = em)TN) =P (| Holl* = ((1 = em)(rN))*")  (337)
and it follows from the self-adjointness of Hp that
|Holl2” = [1Hg 12 < IHII2 = Tr(Hg™ Hg) = Ti(HZ™).  (3.38)
Then the Markov inequality asserts for any C > 0,

E (T(H")

P(TH(H") > ) < ~U

(3.39)

As such, we aim to establish a good bound of E (Tr(HZ")).
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Probabilistic estimate of || Ho||

We use a result from random matrix theory.

Set ¢, == elog((1 —7)/7) and ¢ := (1 + /5)/2. Then

E (Tr(Hg”)) < n¢®" max(ap, by) (3.40)

where

_ 2n _—2n—1 2 _ (2n)! T " +1
ap = (2n = )T NITIT, - by = =00 (1—7) AT

(3.41)

v

In a certain setting, this bound can be simplified so that it does not
contain max. We now work on that.
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Probabilistic estimate of || Ho||

Now we assume the following. From now on, the results require these
assumptions.

Working assumptions
Let constants ¢,y be

1++/5 22
¢ 5 o 1=

, (3.42)

1—17

and variables 0 < aw < 1, apg := (1 — €py), and n € N. For the time
being, we assume T satisfies,

2
am 7N

T| < . 4
||_72n (3.43)

v

Recall the upper bound of | T| was required in the statement of the main

theorem. We will later specify a and n, which gives the necessary bound
for | T].
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Probabilistic estimate of || Ho||

We further assume

Working assumptions

0<7<0.44. (3.44)

Therefore, our proof requires this bound. This may look a bit odd since
the main theorem allows arbitrary 7 in (0, 1]. This, however, works since if

P ([[Holl > (1 — em)TN) < O(N~M) (3.45)

for 7 = 0.44, it holds for 7 > 0.44 as well.
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Probabilistic estimate of || Ho||

We simplify the bound of a,. The next lemma can be proved via a
numerical consideration.

With the above setting, we have the bound,

T
1—

n
ap = (2/’1 _ 1)2nc7_—2n—1N|T|2n S 22n+1e—nnn ( > Nn|T|n (346)
T

The next step is to establish a bound for max(ap, b,).
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Probabilistic estimate of || Ho||

For this purpose, we use an approximation.

Lemma 3.5 (The Stirling approximation)

As integer n goes to oo, it holds asymptotically
nl ~v21y/n (g) . (3.47)
Moreover, for any n € N, the bound
V2m\/n <£>n <nl <eyn (g)n (3.48)
holds. )
We note that
2.50 < V27 < < e < 2.80. (3.49)

f(e)
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Probabilistic estimate of || Ho||

Recall b, has a coefficient (nz,gl' Using the Striling approximation, we
obtain

(2n)l < iz 80v (?n) \/52'802ne—nnn < ontlg=npn (3 50)
nl2n = 27 2.50/n (2)" 2.50 - ' '

Then the both of

n 2n)! "
a, < 22mHlg=npn <1T> NI T|" and by, — 37 ( T ) N|T |
— T T

n2n \1—
are bounded by

n
p2ntlg=npn (17) N7 T, (3.51)
-7
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Probabilistic estimate of || Ho||

We have now,
E (Tr(Hg”)) < n¢*" max(an, by) (3.52)
< ng2n2rtle=npn <1 i T) ! N T|n+1 (3.53)
= 2e "2t ()| T, (3.54)
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Probabilistic estimate of || Ho||

Summarizing the arguments, we have now the following result.

Theorem 3.6

Let0<a<l ay:=a(l —ey), n€N, 7 <0.44 and ¢,~ as defined
before. If T satisfies,
N
IT| < O‘MT : (3.55)
~2 n
then it holds,
E (Tr(H3")) < 2"y "n"t(rN)"| T|"H1. (3.56)
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Asymptotic estimate of || Hp||

The following corollary gives an asymptotic estimate of ||Hp||.

Corollary 3.7

Suppose
71 < iy (357)
Then, for any € > 0, it holds
E ([IHoll) < vV/ITITNlog|T|(1+0(1)), as|T|— o0 (3.58)
and
p (||H0H > (1+ e)ny) 50, as|T|>oo. (3.59)
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Asymptotic estimate of || Hp||

Proof To gain a bound of E (||Hp||), we would like to leverage our estimate
of E (Tr(H?")). Using the self-adjointness of Hy, we get for any n € N,

1Holl*" = 1Hg|I* < ||Hg I = Tr(HE"HE) = Tr(H3"). (3.60)
We then set n:= [log|T|] to get
e "n"|T| < [log|T|]" (3.61)

where [-] is the ceil function.
We thus obtain

E (| Holl) = (& (I|Hol1))*")*/2" < (E(|IHol[*")*/*" < (E(Tr(H5")))*/*"
< (2ny?"e™"n"| T | (7 )"/ 2 (3.62)
< (2n)2"y/|TITN/Tiog | T1] (3.63)
=V |T|TN+/log |T|(1+ o(1)) (3.64)
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Asymptotic estimate of || Hp||

From these computations and the Markov inequality, we get for any e,

P (|| Holl > (1 + )yV/TIrNlog|T])
=P (|[Hol®" > (1+ €22 T|"(+N1og | T|)")
<E (IHolP") /(1 + )" T|"(~Nog | T])"

(222" T|"(rNlog | T[])"
= (14?2 TI"(7Nlog | T|)"
_ (2m)t/ ( [log | T

(

(L4 \(L+e)log|T|

n
) — 0 asn— oo,

which completes the proof.
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Probabilistic estimate of || Ho||

Let's return to the main goal. By the Markov inequality, we have

E(IHIF) & (Tr(Hem))

P(||Hg|lr = ay(tN)™) < = . 3.65
(H 0||F —aM(T ) )— CU%/’;(TN)Zn CY%/’;(TN)Zn ( )
Applying the inequality (Theorem 3.6)
E (Tr(H3")) < 2~ """t (rN)"| T|"H, (3.66)
and the assumption ai”;nN < |T|, we have now
2 n
P(IHg]lr = afy(rN)") < (2n)e™" (51 ) T (367)
F= - a?TN
n_ O
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Probabilistic estimate of ||Hp||
Using the self adjointness of Hy and ||-|| < ||-|| £, we get

P([IHoll = amTN) =P (|[Ho[|" = afs(rN)")
=P([|Holl = ap(TN)")
<P([Hgllr = aia(N)")

2

1
§26_”7'Na—’\2/’ < 2e7"TN—.
Y Y

Finally, by defining n:= [(M + 1) log N], we have

2 2 TN 2
726_’77_/\/ S TLN_M S 72N_M
Y v= N v

Hence, it holds

2
P ([|Holl > (1 — em)TN) < P(|[Hol > amTN) < 2N M.

(3.69)
(3.70)
(3.71)

(3.72)

(3.73)

(3.74)
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Probabilistic estimate of || Ho||

Thus, we have

P(l[Holl = [€2]) <P (2] < (1 = em)TN) + P ([[Hol| = (1 = em)TN)

< (722 + 1NV, (3.75)

Hence, we have proved PP (||Ho|| < |S2|) at least probability 1 — O(N—M),
namely (2% — ﬁz*H) is invertiable.
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Invertiability of "2 — |ﬁl|z*H

We have now established a conclusion.
Theorem 3.8
Let 0 < <1, ay:=a(l —eym), If T obeys,

a%/, N
v [(M+1)log N’

T < (3.76)

then (v*1 — ﬁz*H) is invertiable at least probability 1 — O(N~M).

At this point, this result holds for any « as far as T satisfies the above
inequality. We will later specify oz when guaranteeing |P| < 1 on T°€.
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Magnitude of P on T¢

In the next lecture, we will prove

1

P(t)] = (e - 9]

H) (2" — @z *H) L*sign(F)(t)| < 1 (3.77)

on T¢€.

Today, we will give an estimate as a warm-up.
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Truncated Neumann series

For a square matrix M, we learned the Neumann series expression,
(I—M=M M M2 (3.78)

The below also holds for any n,

(I =M =M+ M 4+ M2 ... (3.79)
(1= M) IME = MY M g2t (3.80)
; (3.81)
(I =Mt = Mt MR MR (3.82)
By summing up 3.79 to 3.82, we have
(=M= -MYT1+M+M -+ M™Y. (3.83)
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The reminder term R,

Using this expression, we have

1
(t*2 — =2*H)! (3.84)
2]
—1 n-1
- (m !QI”( *H)”) Z ‘Q|m(z H)™ (3.85)
- —~ 1
_ Z*HZ( —( ) >Z (3.86)
( m=1 ’Q‘ m:O‘Q
= ("1 + Ry) Zm’mzH (3.87)
Today, we will estimate that R, is small in || - || norm.
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The reminder term R,

We first evaluate R, by the Frobenius norm. Suppose that
[ Hllp < o€ (3.88)

with a high probability (which we will see in the next lecture). Then,

Z Q‘mn
m=

[RnllF = A IE@H)™

7l HIE"
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Inequality between ||-||_, and [|-]|¢

Finally, we use a relation

IM|[os < IM]|g +/#col(M) (3.89)
for any matrix M.
Proof:
M|, = maxz |M; ;| (3.90)
= ml_ax (|MI',1‘7 Tty ’Mi,#col(M)D : (17 ceey 1) (391)
< max |[([Mit, -+, IMigreotan DIl - 12, 1) (3.92)
=max [ |M;;[2\/#col(M) (3.93)
j
< D IMi2/#col(M) (3.94)
ij
=: [|M||p \/#col(M). (3.95
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||Rnl|oo is small

We have now,

an
IRnllos < l|Rnll v/#col(Rn) < 7—= VT, (3.96)

which approaches to 0 as n increases since 0 < a < 1.
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Summary

Today, we showed:

o With probability at least 1 — O(N~M), +*s — 54*H is invertiable,
namely F1r_q is injective.

o Ry:=Y ", |Q|,,,,, (2*H)™" is small in |||, under some assumption.

In the next lecture, we will:

@ Prove |P| < 1on T¢, which completes the proof of the main theorem.J

@ See related topics.
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[3 E. Candes, J. Romberg, and T. Tao.
Robust uncertainty principles: Exact signal reconstruction from highly
incomplete frequency information, 2004.
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