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Review of the previous lectures

Previously, we learned the concept of compressed sensing:

In a real situation, we want to know the information of a signal from
measurements. Intuitively, we need all the measurements to obtain the
signal. However, we can likely recover the signal from partial
measurements via `0 or `1 minimization problems.

A fundamental question is:

When is a recovery possible?
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Main theorem review

Our goal is to prove this probabilistic result.

Theorem 3.1 (Candes, Romberg, and Tao [1])

Let f ∈ CN be a signal, and Ω be the random set, and M be an accuracy
parameter. If f is supported on T ⊂ {0, . . . ,N − 1} and,

E(|Ω|) ≥ |T | logN/α(M), (3.1)

then, f can be exactly recovered from Ω and f̂ |Ω with probability at least
1− O(N−M) as the unique minimizer of the `1-problem,

min
g∈CN

‖g‖1 :=
∑
t

|g(t)|, ĝ |Ω = f̂ |Ω. (3.2)
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The dual problem

Last time, we learned a dual problem:

Theorem 3.2

Let Ω ⊂ {0, . . . ,N − 1}. For a signal f ∈ CN with supp(f ) = T . Suppose
FT→Ω is injective and there exists a polynomial P s.t.

P(t) = sign(f )(t) := f (t)/|f (t)| for t ∈ T , (3.3)

|P(t)| < 1 for t /∈ T , (3.4)

and

P̂(ω) = 0 for ω /∈ Ω. (3.5)

Then, there exists a unique minimizer of the `1-problem, which equals to f .
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Load map to the proof

We constructed a polynomial P as a candidate of the one stated in the
theorem,

P := (ı− 1

|Ω|
H)(ı∗ı− 1

|Ω|
ı∗H)−1ı∗sign(f ) (3.6)

where H : CT → CN is defined by

Hf (t) := −
∑
ω∈Ω

∑
t′∈T :t′ 6=t

e−iω(t−t′) (3.7)

and ı : CT → CN , ı∗ : CN → CT are the inclusion and the restriction.
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Load map to the proof

We checked

P = sign(f ) on T , (3.8)

P̂ = 0 on Ωc , (3.9)

and that the invertiability of

ı∗ı− 1

|Ω|
ı∗H =

1

|Ω|
F∗T→Ω FT→Ω (3.10)

implies the injectivity of FT→Ω.

6 / 44



Load map to the proof

Our task is now to verify

1 Invertiability of ı∗ı− 1
|Ω| ı
∗H

2 |P| < 1 on T c

with probability at least 1− O(N−M).

Today’s contents

We prove 1 and some results for 2.
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Matrix norms

Let M be a n ×m complex valued matrix. We use the following norms.

Infinity norm ‖M‖∞ := max
i

∑
j

|Mi ,j |, (3.11)

Operator norm ‖M‖ := sup
‖x‖2=1

‖Mx‖2, (3.12)

Frobenius norm ‖M‖F :=

√∑
i ,j

|Mi ,j |2. (3.13)

Note all matrix norms are equivalent. Namely, convergence in one norm
means convergence in all the norms. The space of matrices equipped with
these norms is complete (Banach).
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Properties of ‖·‖∞

‖A + B‖∞ ≤ ‖A‖∞ + ‖B‖∞
‖AB‖∞ ≤ ‖A‖∞ ‖B‖∞
‖A‖∞ = sup‖x‖∞=1 ‖Ax‖∞

9 / 44



Properties of ‖·‖

‖A + B‖ ≤ ‖A‖+ ‖B‖
‖AB‖ ≤ ‖A‖ ‖B‖
‖A∗‖ = ‖A‖∥∥A2

∥∥ = ‖A‖2 if A is self adjoint

maxi |λi | ≤ ‖A‖
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Properties of ‖·‖F

‖A‖F =
√

Tr(A∗A)

‖A + B‖F ≤ ‖A‖F + ‖B‖F (HW)

‖AB‖F ≤ ‖A‖F ‖B‖F (HW)

‖A‖ ≤ ‖A‖F
‖A‖∞ ≤ #col(A) ‖A‖F
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Properties of matrix norms

Let A be a self-adjoint matrix. Then∥∥A2
∥∥ = ‖A‖2 . (3.14)

Proof It is immediate that,∥∥A2
∥∥ ≤ ‖A‖ ‖A‖ = ‖A‖2 . (3.15)

The other inequality is by the Cauchy-Schwartz inequality,

‖A‖2 = sup
‖x‖2=1

‖Ax‖2
2 = sup

‖x‖2=1
|〈Ax ,Ax〉| = sup

‖x‖2=1
|〈A∗Ax , x〉| (3.16)

≤ sup
‖x‖2=1

‖A∗Ax‖2‖x‖2 = ‖A2‖. (3.17)
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Properties of matrix norms

For a matrix A,

‖A‖ ≤ ‖A‖F . (3.18)

Proof For any vector x , ‖x‖2 = ‖x‖F by definition. Therefore we have,

‖A‖ = sup
‖x‖2=1

‖Ax‖2 = sup
‖x‖F =1

‖Ax‖F ≤ sup
‖x‖F =1

‖A‖F ‖x‖F = ‖A‖F .

(3.19)

13 / 44



Our strategy

To prove the invertiability of ı∗ı− 1
|Ω| ı
∗H, we show∥∥∥∥ 1

|Ω|
ı∗H

∥∥∥∥ < 1. (3.20)

with a higher probability than we need. To see why, we know that

max
k
|λk | ≤ ‖M‖ (3.21)

for any matrix M.1 Then the eigenvalues of I −M is bounded by
1−maxk |λk | and 1 + maxk |λk |.

1In fact the equality holds in our case since ı∗H is self adjoint.
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Neumann Series

Moreover, we can explicitly find (ı∗ı− 1
|Ω| ı
∗H)−1 as a Neumann series,

which will be useful when we show the boundeddness of |P|.

Proposition 3.1 (The Neumann Series)

Let M be a square matrix. Then ‖M‖ < 1 implies that
∑∞

n=0 M
n

converges and equals to (I −M)−1.
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Neumann Series

Proof We first show the existence of the limit. Due to the completeness
of the space, it suffices to prove that the partial sum

Sn :=
n∑

i=0

M i (3.22)

is a Cauchy series in ‖·‖. For k and l with k > l ,

‖Sk − Sl‖ =

∥∥∥∥∥
k∑

i=l+1

M i

∥∥∥∥∥ ≤
k∑

i=l+1

∥∥M i
∥∥ ≤ k∑

i=l+1

‖M‖i

= ‖M‖l+1 (1− ‖M‖k−l)
1− ‖M‖

→ 0 as l , k →∞.

Due to the equivalence of norms, this implies the convergence in max ‖ · ‖
norm i.e. all entries converge. Hence S := limn→∞ Sn exists.
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Neumann Series

We then show S = (I −M)−1. First,

MSn =
n+1∑
i=1

M i =
n+1∑
i=0

M i − I = Sn+1 − I . (3.23)

From this, it follows

‖MS − (S − I )‖ = ‖MS −MSn + (Sn+1 − I )− (S − I )‖ (3.24)

≤ ‖MS −MSn‖+ ‖(Sn+1 − I )− (S − I )‖ (3.25)

≤ ‖M‖ ‖S − Sn‖+ ‖Sn − S‖ → 0. (3.26)

Hence, we obtained

I = S −MS = S(I −M). (3.27)

By doing the same with SnM, we get I = (I −M)S .
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Strategy review

We hereby denote H0 := ı∗H for simplicity.

Remark

In order to prove the invertiability of ı∗ı− 1
|Ω|H0 for a probability at least

1− O(N−M), our goal is to show ‖H0‖ < |Ω| for an equally high
probability.
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Decomposition of events

We would like to attain

P (‖H0‖ ≥ |Ω|) ≤ O(N−M). (3.28)

For this purpose, we consider a decomposition of events

{‖H0‖ ≥ |Ω|} ={(1− εM)τN ≥ ‖H0‖ ≥ |Ω|} (3.29)

∪ {‖H0‖ ≥ (1− εM)τN ≥ |Ω|} (3.30)

∪ {‖H0‖ ≥ |Ω| ≥ (1− εM)τN} (3.31)

where

εM :=
2M logN

τN
(3.32)

Note τN = E (|Ω|) since Ω is defined using Binominal distribution. Our
goal is to see the probability of each event set is bounded to O(N−M).
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Decomposition of events

Regarding the first set, we note that

{(1− εM)τN ≥ ‖H0‖ ≥ |Ω|} ⊂ {(1− εM)τN ≥ |Ω|} (3.33)

and we already obtained

P ((1− εM)τN ≥ |Ω|) ≤ O(N−M) (3.34)

in the last lecture.
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Decomposition of events

Regarding the second and the thrid set,

{‖H0‖ ≥ (1− εM)τN ≥ |Ω|}, {‖H0‖ ≥ |Ω| ≥ (1− εM)τN}, (3.35)

their union is contained in

{‖H0‖ ≥ (1− εM)τN}. (3.36)

We aim to see the probability measure of this set is bounded by O(N−M).
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Load map to upper bound

To obtain an upper bound of P (‖H0‖ ≥ (1− εM)τN), we concern
E
(
Tr(H2n

0 )
)
. This is because

P (‖H0‖ ≥ (1− εM)τN) = P
(
‖H0‖2n ≥ ((1− εM)(τN))2n

)
(3.37)

and it follows from the self-adjointness of H0 that

‖H0‖2n = ‖Hn
0 ‖

2 ≤ ‖Hn
0 ‖

2
F = Tr(Hn∗

0 Hn
0 ) = Tr(H2n

0 ). (3.38)

Then the Markov inequality asserts for any C > 0,

P
(
Tr(H2n

0 ) ≥ C
)
≤

E
(
Tr(H2n

0 )
)

C
. (3.39)

As such, we aim to establish a good bound of E
(
Tr(H2n

0 )
)
.
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Probabilistic estimate of ‖H0‖

We use a result from random matrix theory.

Lemma 3.3

Set cτ := e log((1− τ)/τ) and φ := (1 +
√

5)/2. Then

E
(
Tr(H2n

0 )
)
≤ nφ2n max(an, bn) (3.40)

where

an = (2n − 1)2nc−2n−1
τ N|T |2n, bn =

(2n)!

n!2n

(
τ

1− τ

)n

Nn|T |n+1.

(3.41)

In a certain setting, this bound can be simplified so that it does not
contain max. We now work on that.
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Probabilistic estimate of ‖H0‖
Now we assume the following. From now on, the results require these
assumptions.

Working assumptions

Let constants φ, γ be

φ :=
1 +
√

5

2
, γ :=

√
2φ2

1− τ
, (3.42)

and variables 0 < α < 1, αM := α(1− εM), and n ∈ N. For the time
being, we assume T satisfies,

|T | ≤
α2
M

γ2

τN

n
. (3.43)

Recall the upper bound of |T | was required in the statement of the main
theorem. We will later specify α and n, which gives the necessary bound
for |T |.
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Probabilistic estimate of ‖H0‖

We further assume

Working assumptions

0 < τ ≤ 0.44. (3.44)

Therefore, our proof requires this bound. This may look a bit odd since
the main theorem allows arbitrary τ in (0, 1]. This, however, works since if

P (‖H0‖ ≥ (1− εM)τN) < O(N−M) (3.45)

for τ = 0.44, it holds for τ ≥ 0.44 as well.

25 / 44



Probabilistic estimate of ‖H0‖

We simplify the bound of an. The next lemma can be proved via a
numerical consideration.

Lemma 3.4

With the above setting, we have the bound,

an := (2n − 1)2nc−2n−1
τ N|T |2n ≤ 22n+1e−nnn

(
τ

1− τ

)n

Nn|T |n. (3.46)

The next step is to establish a bound for max(an, bn).
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Probabilistic estimate of ‖H0‖
For this purpose, we use an approximation.

Lemma 3.5 (The Stirling approximation)

As integer n goes to ∞, it holds asymptotically

n! ∼
√

2π
√
n
(n
e

)n
. (3.47)

Moreover, for any n ∈ N, the bound

√
2π
√
n
(n
e

)n
≤ n! ≤ e

√
n
(n
e

)n
(3.48)

holds.

We note that

2.50 <
√

2π <
n!

√
n
(
n
e

)n < e < 2.80. (3.49)
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Probabilistic estimate of ‖H0‖

Recall bn has a coefficient (2n)!
n!2n . Using the Striling approximation, we

obtain

(2n)!

n!2n
≤ 1

2n
2.80
√

2n
(

2n
e

)2n

2.50
√
n
(
n
e

)n =
√

2
2.80

2.50
2ne−nnn ≤ 2n+1e−nnn. (3.50)

Then the both of

an ≤ 22n+1e−nnn
(

τ

1− τ

)n

Nn|T |n and bn =
(2n)!

n!2n

(
τ

1− τ

)n

Nn|T |n+1

are bounded by

22n+1e−nnn
(

τ

1− τ

)n

Nn|T |n+1. (3.51)
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Probabilistic estimate of ‖H0‖

We have now,

E
(
Tr(H2n

0 )
)
≤ nφ2n max(an, bn) (3.52)

≤ nφ2n22n+1e−nnn
(

τ

1− τ

)n

Nn|T |n+1 (3.53)

= 2e−nγ2nnn+1(τN)n|T |n+1. (3.54)
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Probabilistic estimate of ‖H0‖

Summarizing the arguments, we have now the following result.

Theorem 3.6

Let 0 < α < 1, αM := α(1− εM), n ∈ N, τ ≤ 0.44 and φ, γ as defined
before. If T satisfies,

|T | ≤
α2
M

γ2

τN

n
, (3.55)

then it holds,

E
(
Tr(H2n

0 )
)
≤ 2e−nγ2nnn+1(τN)n|T |n+1. (3.56)
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Asymptotic estimate of ‖H0‖

The following corollary gives an asymptotic estimate of ‖H0‖.

Corollary 3.7

Suppose

|T | ≤ τN

log(τN)
. (3.57)

Then, for any ε > 0, it holds

E (‖H0‖) ≤ γ
√
|T |τN log |T |(1 + o(1)), as |T | → ∞ (3.58)

and

P
(
‖H0‖ > (1 + ε)γ

√
|T |τN log |T |

)
→ 0, as |T | → ∞. (3.59)
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Asymptotic estimate of ‖H0‖
Proof To gain a bound of E (‖H0‖), we would like to leverage our estimate
of E

(
Tr(H2n)

)
. Using the self-adjointness of H0, we get for any n ∈ N,

‖H0‖2n = ‖Hn
0 ‖

2 ≤ ‖Hn
0 ‖

2
F = Tr(Hn∗

0 Hn
0 ) = Tr(H2n

0 ). (3.60)

We then set n := dlog |T |e to get

e−nnn|T | ≤ dlog |T |en (3.61)

where d·e is the ceil function.
We thus obtain

E (‖H0‖) = ((E (‖H0‖))2n)1/2n ≤ (E(‖H0‖2n))1/2n ≤ (E(Tr(H2n
0 )))1/2n

≤ (2nγ2ne−nnn|T |n+1(τN)n)1/2n (3.62)

≤ (2n)1/2nγ
√
|T |τN

√
dlog |T |e (3.63)

= γ
√
|T |τN

√
log |T |(1 + o(1)) (3.64)
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Asymptotic estimate of ‖H0‖

From these computations and the Markov inequality, we get for any ε,

P
(
‖H0‖ > (1 + ε)γ

√
|T |τN log |T |

)
= P

(
‖H0‖2n > (1 + ε)2nγ2n|T |n(τN log |T |)n

)
≤ E

(
‖H0‖2n

)/
(1 + ε)2nγ2n|T |n(τN log |T |)n

≤ (2n)1/2nγ2n|T |n(τNdlog |T |e)n

(1 + ε)2nγ2n|T |n(τN log |T |)n

=
(2n)1/2n

(1 + ε)n

(
dlog |T |e

(1 + ε) log |T |

)n

→ 0 as n→∞,

which completes the proof.
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Probabilistic estimate of ‖H0‖

Let’s return to the main goal. By the Markov inequality, we have

P (‖Hn
0 ‖F ≥ α

n
M(τN)n) ≤

E
(
‖Hn

0 ‖
2
F

)
α2n
M (τN)2n

=
E
(
Tr(H2n

0 )
)

α2n
M (τN)2n

. (3.65)

Applying the inequality (Theorem 3.6)

E
(
Tr(H2n

0 )
)
≤ 2e−nγ2nnn+1(τN)n|T |n+1, (3.66)

and the assumption
α2
MτN

γ2n
≤ |T |, we have now

P (‖Hn
0 ‖F ≥ α

n
M(τN)n) ≤ (2n)e−n

(
nγ2

α2τN

)n

|T |n+1 (3.67)

≤ 2e−nτN
α2
M

γ2
. (3.68)
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Probabilistic estimate of ‖H0‖
Using the self adjointness of H0 and ‖·‖ ≤ ‖·‖F , we get

P (‖H0‖ ≥ αMτN) = P (‖H0‖n ≥ αn
M(τN)n) (3.69)

= P (‖Hn
0 ‖ ≥ αn

M(τN)n) (3.70)

≤ P (‖Hn
0 ‖F ≥ α

n
M(τN)n) (3.71)

≤ 2e−nτN
α2
M

γ2
≤ 2e−nτN

1

γ2
. (3.72)

Finally, by defining n := d(M + 1) logNe, we have

2

γ2
e−nτN ≤ 2

γ2

τN

N
N−M ≤ 2

γ2
N−M . (3.73)

Hence, it holds

P (‖H0‖ ≥ (1− εM)τN) ≤ P (‖H0‖ ≥ αMτN) ≤ 2

γ2
N−M . (3.74)
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Probabilistic estimate of ‖H0‖

Thus, we have

P (‖H0‖ ≥ |Ω|) ≤ P (|Ω| ≤ (1− εM)τN) + P (‖H0‖ ≥ (1− εM)τN)

≤ (
2

γ2
+ 1)N−M . (3.75)

Hence, we have proved P (‖H0‖ < |Ω|) at least probability 1− O(N−M),
namely (ı∗ı− 1

|Ω| ı
∗H) is invertiable.
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Invertiability of ı∗ı− 1
|Ω|ı
∗H

We have now established a conclusion.

Theorem 3.8

Let 0 < α < 1, αM := α(1− εM), If T obeys,

|T | ≤
α2
M

γ2

τN

d(M + 1) logNe
, (3.76)

then (ı∗ı− 1
|Ω| ı
∗H) is invertiable at least probability 1− O(N−M).

At this point, this result holds for any α as far as T satisfies the above
inequality. We will later specify α when guaranteeing |P| < 1 on T c .
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Magnitude of P on T c

In the next lecture, we will prove

|P(t)| =

∣∣∣∣(ı− 1

|Ω|
H)(ı∗ı− 1

|Ω|
ı∗H)−1ı∗sign(f )(t)

∣∣∣∣ < 1 (3.77)

on T c .
Today, we will give an estimate as a warm-up.

38 / 44



Truncated Neumann series

For a square matrix M, we learned the Neumann series expression,

(I −M)−1 = M0 + M1 + M2 + · · · . (3.78)

The below also holds for any n,

(I −Mn)−1I = M0 + Mn + M2n + · · · (3.79)

(I −Mn)−1M1 = M1 + Mn+1 + M2n+1 + · · · (3.80)

... (3.81)

(I −Mn)−1Mn−1 = Mn−1 + M2n−1 + M3n−1 + · · · (3.82)

By summing up 3.79 to 3.82, we have

(I −M)−1 = (I −Mn)−1(1 + M + M2 + · · ·+ Mn−1). (3.83)
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The reminder term Rn

Using this expression, we have

(ı∗ı− 1

|Ω|
ı∗H)−1 (3.84)

=

(
ı∗ı− 1

|Ω|n
(ı∗H)n

)−1 n−1∑
m=0

1

|Ω|m
(ı∗H)m (3.85)

=

(
ı∗ı+

∞∑
m=1

(
1

|Ω|n
(ı∗H)n

)m
)

n−1∑
m=0

1

|Ω|m
(ı∗H)m (3.86)

=: (ı∗ı+ Rn)
n−1∑
m=0

1

|Ω|m
(ı∗H)m (3.87)

Today, we will estimate that Rn is small in ‖ · ‖∞ norm.

40 / 44



The reminder term Rn

We first evaluate Rn by the Frobenius norm. Suppose that

‖ı∗H‖F ≤ α|Ω| (3.88)

with a high probability (which we will see in the next lecture). Then,

‖Rn‖F =

∥∥∥∥∥
∞∑

m=1

1

|Ω|mn
(ı∗H)mn

∥∥∥∥∥
F

≤
∞∑

m=1

1

|Ω|mn
‖(ı∗H)mn‖F

≤
∞∑

m=1

1

|Ω|mn
‖ı∗H‖mn

F

≤
∞∑

m=1

αmn

=
αn

1− αn
.
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Inequality between ‖·‖∞ and ‖·‖F
Finally, we use a relation

‖M‖∞ ≤ ‖M‖F
√

#col(M) (3.89)

for any matrix M.
Proof:

‖M‖∞ := max
i

∑
j

|Mi ,j | (3.90)

= max
i

(|Mi ,1|, · · · , |Mi ,#col(M)|) · (1, . . . , 1) (3.91)

≤ max
i
‖(|Mi ,1|, · · · , |Mi ,#col(M)|)‖ · ‖(1, . . . , 1)‖ (3.92)

= max
i

√∑
j

|Mi ,j |2
√

#col(M) (3.93)

≤
√∑

i ,j

|Mi ,j |2
√

#col(M) (3.94)

=: ‖M‖F
√

#col(M). (3.95)
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‖Rn‖∞ is small

We have now,

‖Rn‖∞ ≤ ‖Rn‖F
√

#col(Rn) ≤ αn

1− αn

√
|T |, (3.96)

which approaches to 0 as n increases since 0 < α < 1.
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Summary

Today, we showed:

With probability at least 1− O(N−M), ı∗ı− 1
Ω ı
∗H is invertiable,

namely FT→Ω is injective.

Rn :=
∑∞

m=1
1
|Ω|mn (ı∗H)mn is small in ‖·‖∞ under some assumption.

In the next lecture, we will:

Prove |P| < 1 on T c , which completes the proof of the main theorem.

See related topics.
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