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Exercise 2.1. Show the following:

• ‖A + B‖F ≤ ‖A‖F + ‖B‖F for n×m complex valued matrices A and B.

• ‖AB‖F ≤ ‖A‖F ‖B‖F for n×m and m× p complex valued matrices A and B.

Exercise 2.2. Interestingly, the optimality of a signal for the `1-problem,

min
g∈CN

‖g‖1 :=
∑
t

|g(t)|, ĝ|Ω = f̂ |Ω. (2.1)

depends only on its support, not its values.
Show that a signal f ∈ CN is the unique minimizer of the problem if, for any non-zero

h ∈ CN s.t. ĥ|Ω = 0, it holds ∑
t∈T
|h(t)| <

∑
t∈T c

|h(t)| (2.2)

where T := supp(f). This inequality tells that it is impossible to concentrate “half” of the
information, in `1-norm, on a sparse set T .

Exercise 2.3. Any linear program can be converted to an equivelent problem that takes
the standard form, i.e 

minx∈RN c · x
subject to Ax = b

subject to x ≥ 0 .

This can be done by the following procedure:

1. Convert maxx∈RN c · x to minx∈RN −c · x

2. Convert constraints of the form Ax ≥ b to −Ax ≤ −b.

3. Convert constraints of the form Ax ≤ b to Ax+ y = b by adding slack variables y ≥ 0.

4. For any variable x that is not constrained in the form x ≥ 0, express x = y − z with
y, z ≥ 0.

We know at this point that, due to the linearity of the objective function, if the solution
exists and is unique, it lies on either of the vertices of the polyhedron illustrated in Figure 1.
Therefore, we can obtain the solution by computing the objective function on the vertices.
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(a) Show Problem (2.1) can be written as
mint∈RN 1 · t
subject to FT→Ωg = f̂ |Ω
subject to g − t ≤ 0, g + t ≥ 0.

You can assume the signal is real-valued.

(b) Convert this into standard form.

(c) If the resulting linear problem has n variables and m constrains, how many vertices does
the polyhedron of feasible points have? (you can give an upper bound)

Exercise 2.4. Code compressed sensing via `1-optimization:

1. Make a random sparse signal.

2. Perform random measurements i.e. randomly decide Ω and compute f̂ |Ω.

3. Perform `1-optimization from Ω and f̂ |Ω (you can solve directly using a convex opti-
mization library, or convert it into a linear programming and solve it using a linear
programming library).

4. Compare the reconstructed signal (the solution of the optimization problem) with the
original signal f .

5. (Optional) Repeat this steps for other random set of frequencies Ω′.

6. Perform `2-optimization, instead of `1-optimization, from Ω and f̂ |Ω. Recall that you
can solve the optimization problem or use the inverse Fourier transform assuming the
coefficients outside of Ω are zero.

7. Compare the results of `1 and `2 recoveries.

8. (Optional) Do the same using another measurement matrix e.g. A matrix s.t. each
entry is generated from a Gaussian distribution and the rows are orthogonalized.

9. (Super optional) Try 2D image reconstruction.

Figure 1: A linear programming in standard form with variables x1, x2 and equality
constraints represented by the colored lines.
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